Quaternionic electron theory: Geometry, algebra, and Dirac's spinors

被引:14
作者
De Leo, S
Rodrigues, WA
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[2] INFN, Sez Lecce, I-73100 Lecce, Italy
[3] UNICAMP, IMECC, BR-13081970 Campinas, SP, Brazil
关键词
D O I
10.1023/A:1026692508708
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The use of complexified quaternions and i-complex geometry in formulating the Dirac equation allows us to give interesting geometric interpretations hidden in the conventional matrix-based approach.
引用
收藏
页码:1707 / 1720
页数:14
相关论文
共 18 条
[1]  
Adler SL., 1995, Quaternionic quantum mechanics and quantum fields
[2]  
BAYLIS WE, 1997, ADV APPL CLIFFORD AL, V7
[3]  
BJORKEN JD, 1985, RELATIVISTIC QUANTUM
[4]   QUATERNIONIC DIRAC-EQUATION [J].
DAVIES, AJ .
PHYSICAL REVIEW D, 1990, 41 (08) :2628-2630
[5]   Quantum mechanics: From complex to complexified quaternions [J].
De Leo, S ;
Rodrigues, WA .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) :2725-2757
[6]  
DELEO S, IN PRESS INT J THEOR
[7]  
DELEO S, 1996, INT J MODERN PHYSI A, V11, P3073
[8]  
FEYNMAN RP, 1975, FEYNMAN LECT PHYSICS, V1
[9]   LOCAL OBSERVABLES IN QUANTUM THEORY [J].
HESTENES, D ;
GURTLER, R .
AMERICAN JOURNAL OF PHYSICS, 1971, 39 (09) :1028-&
[10]   REAL SPINOR FIELDS [J].
HESTENES, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :798-+