Positive periodic solutions of neutral predator-prey model with Beddington-DeAngelis functional response

被引:11
作者
Liu, Guirong [1 ]
Yan, Jurang [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
Predator-prey; Periodic solution; Neutral; Coincidence degree; Beddington-DeAngelis; SYSTEM; STABILITY;
D O I
10.1016/j.camwa.2010.09.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using a continuation theorem based on coincidence degree theory, some new sufficient conditions are obtained for the existence of positive periodic solutions for a neutral predator-prey model with the Beddington-DeAngelis functional response. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2317 / 2322
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[2]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[3]   Dynamics of a nonautonomous predator-prey dispersion-delay system with Beddington-DeAngelis functional response [J].
Cai, Liming ;
Li, Xuezhi ;
Yu, Jingyuan ;
Zhu, Guangtian .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :2064-2075
[4]   Stability of the boundary solution of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J].
Chen, Fengde ;
Chen, Yuming ;
Shi, Jinlin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) :1057-1067
[5]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[6]   A qualitative study on general Gause-type predator-prey models with constant diffusion rates [J].
Ko, Wonlyul ;
Ryu, Kimun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :217-230
[7]   Analysis of diffusive two-competing-prey and one-predator systems with Beddington-Deangelis functional response [J].
Ko, Wonlyul ;
Ryu, Kimun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4185-4202
[8]   Positive periodic solutions for a class of neutral delay Gause-type predator-prey system [J].
Liu, Guirong ;
Yan, Weiping ;
Yan, Jurang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4438-4447
[9]   Permanence and stability in non-autonomous predator-prey Lotka-Volterra systems with feedback controls [J].
Nie, Linfei ;
Teng, Zhidong ;
Hu, Lin ;
Peng, Jigen .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (03) :436-448
[10]   Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case [J].
Peng, Rui ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (03) :866-886