ERROR BOUNDS FOR SOME SEMIDEFINITE PROGRAMMING APPROACHES TO POLYNOMIAL MINIMIZATION ON THE HYPERCUBE

被引:35
作者
de Klerk, Etienne [1 ]
Laurent, Monique [1 ,2 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[2] Ctr Wiskunde & Informat, NL-1098 XG Amsterdam, Netherlands
关键词
Positivstellensatz; positive polynomial; sum of squares of polynomials; bound constrained optimization of polynomials; multivariate Bernstein approximation; semidefinite programming; SEMI-ALGEBRAIC SETS; OPTIMIZATION; COMPLEXITY; POSITIVSTELLENSATZ; MOMENTS; SIMPLEX; THEOREM; SQUARES;
D O I
10.1137/100790835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimizing a polynomial on the hypercube [0, 1](n) and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmudgen [Math. Ann., 289 (1991), pp. 203-206]. The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates on the hypercube.
引用
收藏
页码:3104 / 3120
页数:17
相关论文
共 29 条
[1]  
[Anonymous], ARCH MATH B IN PRESS
[2]   Solving standard quadratic optimization problems via linear, semidefinite and copositive programming [J].
Bomze, IM ;
De Klerk, E .
JOURNAL OF GLOBAL OPTIMIZATION, 2002, 24 (02) :163-185
[3]   The complexity of optimizing over a simplex, hypercube or sphere: a short survey [J].
de Klerk, Etienne .
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2008, 16 (02) :111-125
[4]   A PTAS for the minimization of polynomials of fixed degree over the simplex [J].
de Klerk, Etienne ;
Laurent, Monique ;
Parrilo, Pablo A. .
THEORETICAL COMPUTER SCIENCE, 2006, 361 (2-3) :210-225
[5]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[7]   Some optimal inapproximability results [J].
Håstad, J .
JOURNAL OF THE ACM, 2001, 48 (04) :798-859
[8]   Clique is hard to approximate within n1-ε [J].
Håstad, J .
ACTA MATHEMATICA, 1999, 182 (01) :105-142
[9]   CLOSED-FORM EXPRESSIONS FOR THE MOMENTS OF THE BINOMIAL PROBABILITY DISTRIBUTION [J].
Knoblauch, Andreas .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (01) :197-204
[10]   An explicit equivalent positive semidefinite program for nonlinear 0-1 programs [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (03) :756-769