A guide to null models for animal social network analysis

被引:289
作者
Farine, Damien R. [1 ,2 ,3 ]
机构
[1] Max Planck Inst Ornithol, Dept Collect Behav, D-78457 Constance, Germany
[2] Univ Konstanz, Chair Biodivers & Collect Behav, Dept Biol, D-78457 Constance, Germany
[3] Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England
来源
METHODS IN ECOLOGY AND EVOLUTION | 2017年 / 8卷 / 10期
基金
英国生物技术与生命科学研究理事会;
关键词
group living; null model; permutation test; social network analysis; sociality; GREAT TITS; BEHAVIOR;
D O I
10.1111/2041-210X.12772
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Null models are an important component of the social network analysis toolbox. However, their use in hypothesis testing is still not widespread. Furthermore, several different approaches for constructing null models exist, each with their relative strengths and weaknesses, and often testing different hypotheses. In this study, I highlight why null models are important for robust hypothesis testing in studies of animal social networks. Using simulated data containing a known observation bias, I test how different statistical tests and null models perform if such a bias was unknown. I show that permutations of the raw observational (or "pre-network') data consistently account for underlying structure in the generated social network, and thus can reduce both type I and type II error rates. However, permutations of pre-network data remain relatively uncommon in animal social network analysis because they are challenging to implement for certain data types, particularly those from focal follows and GPS tracking. I explain simple routines that can easily be implemented across different types of data, and supply R code that applies each type of null model to the same simulated dataset. The R code can easily be modified to test hypotheses with empirical data. Widespread use of pre-network data permutation methods will benefit researchers by facilitating robust hypothesis testing.
引用
收藏
页码:1309 / 1320
页数:12
相关论文
共 37 条
[1]   Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird [J].
Adelman, James S. ;
Moyers, Sahnzi C. ;
Farine, Damien R. ;
Hawley, Dana M. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 282 (1815)
[2]   OBSERVATIONAL STUDY OF BEHAVIOR - SAMPLING METHODS [J].
ALTMANN, J .
BEHAVIOUR, 1974, 49 (3-4) :227-267
[3]   Consistent individual differences in the social phenotypes of wild great tits, Parus major [J].
Aplin, L. M. ;
Firth, J. A. ;
Farine, D. R. ;
Voelkl, B. ;
Crates, R. A. ;
Culina, A. ;
Garroway, C. J. ;
Hinde, C. A. ;
Kidd, L. R. ;
Psorakis, I. ;
Milligan, N. D. ;
Radersma, R. ;
Verhelst, B. L. ;
Sheldon, B. C. .
ANIMAL BEHAVIOUR, 2015, 108 :117-127
[4]   Individual personalities predict social behaviour in wild networks of great tits (Parus major) [J].
Aplin, L. M. ;
Farine, D. R. ;
Morand-Ferron, J. ;
Cole, E. F. ;
Cockburn, A. ;
Sheldon, B. C. .
ECOLOGY LETTERS, 2013, 16 (11) :1365-1372
[5]   A method for testing association patterns of social animals [J].
Bejder, L ;
Fletcher, D ;
Bräger, S .
ANIMAL BEHAVIOUR, 1998, 56 :719-725
[6]   Developmental stress predicts social network position [J].
Boogert, Neeltje J. ;
Farine, Damien R. ;
Spencer, Karen A. .
BIOLOGY LETTERS, 2014, 10 (10)
[7]   A COMPARISON OF ASSOCIATION INDEXES [J].
CAIRNS, SJ ;
SCHWAGER, SJ .
ANIMAL BEHAVIOUR, 1987, 35 :1454-1469
[8]   Hypothesis testing in animal social networks [J].
Croft, Darren P. ;
Madden, Joah R. ;
Franks, Daniel W. ;
James, Richard .
TRENDS IN ECOLOGY & EVOLUTION, 2011, 26 (10) :502-507
[9]  
Croft DP, 2008, EXPLORING ANIMAL SOCIAL NETWORKS, P1
[10]   Sensitivity of MRQAP tests to collinearity and autocorrelation conditions [J].
Dekker, David ;
Krackhardt, David ;
Snijders, Tom A. B. .
PSYCHOMETRIKA, 2007, 72 (04) :563-581