Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo

被引:598
作者
Bergstrom, L
Ullio, P
Buckley, JH
机构
[1] Stockholm Univ, Dept Phys, SE-11385 Stockholm, Sweden
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
D O I
10.1016/S0927-6505(98)00015-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent advances in N-body simulations of cold dark matter halos point to a substantial density enhancement near the center. This means that, e.g., the gamma-ray signals from neutralino dark matter annihilations would be significantly enhanced compared to old estimates based on an isothermal sphere model with large core radius. Another important development concerns new detectors, both space- and ground-based, which will cover the window between 50 and 300 GeV where presently no cosmic gamma-ray data are available. Thirdly, new calculations of the gamma-ray line signal (a sharp spike of 10(-3) relative width) from neutralino annihilations have revealed a hitherto neglected contribution which, for heavy higgsino-like neutralinos, gives an annihilation rate an order of magnitude larger than previously predicted. We make a detailed phenomenological study of the possible detection rates given these three pieces of new information. We show that the proposed upgrade of the Whipple telescope will make it sensitive to a region of parameter space, with substantial improvements possible with the planned new generation of Air Cherenkov Telescope Arrays. We also comment on the potential of the GLAST satellite detector. An evaluation of the continuum gamma-rays produced in neutralino annihilations into the main modes is also done. It is shown that a combination of high-rate models and very peaked halo models are already severely constrained by existing data. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 59 条
  • [31] GORET P, ASTROPH9710260
  • [32] GOULD A, 1990, MON NOT R ASTRON SOC, V244, P25
  • [33] EGRET observations of the diffuse gamma-ray emission from the Galactic plane
    Hunter, SD
    Bertsch, DL
    Catelli, JR
    Dame, TM
    Digel, SW
    Dingus, BL
    Esposito, JA
    Fichtel, CE
    Hartman, RC
    Kanbach, G
    Kniffen, DA
    Lin, YC
    MayerHasselwander, HA
    Michelson, PF
    vonMontigny, C
    Mukherjee, R
    Nolan, PL
    Schneid, E
    Sreekumar, P
    Thaddeus, P
    Thompson, DJ
    [J]. ASTROPHYSICAL JOURNAL, 1997, 481 (01) : 205 - 240
  • [34] NEUTRINOS FROM PARTICLE DECAY IN THE SUN AND EARTH
    JUNGMAN, G
    KAMIONKOWSKI, M
    [J]. PHYSICAL REVIEW D, 1995, 51 (02): : 328 - 340
  • [35] Supersymmetric dark matter
    Jungman, G
    Kamionkowski, M
    Griest, K
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 267 (5-6): : 195 - 373
  • [36] GAMMA-RAYS FROM NEUTRALINO ANNIHILATION
    JUNGMAN, G
    KAMIONKOWSKI, M
    [J]. PHYSICAL REVIEW D, 1995, 51 (06): : 3121 - 3124
  • [37] KIFUNE T, 1997, IN PRESS P 4 COMPT S
  • [38] The mass of the Milky Way
    Kochanek, CS
    [J]. ASTROPHYSICAL JOURNAL, 1996, 457 (01) : 228 - 243
  • [39] KRAVTSOV AV, UNPUB ASTROPHYS J
  • [40] Detection of multi-TeV emission from Markarian 421
    Krennrich, F
    Akerlof, CW
    Buckley, JH
    Burdett, AM
    CarterLewis, DA
    Cawley, MF
    Catanese, M
    Connaughton, V
    Fegan, DJ
    Finley, JP
    Gaidos, JA
    Lamb, RC
    Lessard, R
    McEnery, JE
    Mohanty, G
    Quinn, J
    Rodgers, AJ
    Rose, HJ
    Schubnell, MS
    Sembroski, GH
    Weekes, TC
    Wilson, C
    Zweerink, J
    [J]. ASTROPHYSICAL JOURNAL, 1997, 481 (02) : 758 - 763