Two-dimensional discrete solitons in rotating lattices

被引:30
|
作者
Cuevas, Jesus [1 ]
Malomed, Boris A. [2 ]
Kevrekidis, P. G. [3 ]
机构
[1] Escuela Univ Politecn, Dept Fis Aplicada I, Grp Fis No Lineal, Seville 41011, Spain
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevE.76.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a two-dimensional discrete nonlinear Schrodinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two types of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance R from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities S=1 and 2. At a fixed value of rotation frequency Omega, a stability interval for the FSs is found in terms of the lattice coupling constant C, 0 < C < C-cr(R), with monotonically decreasing C-cr(R). VSs with S=1 have a stability interval, (C) over tilde ((S=1))(cr)(Omega)< C < C-cr((S=1))(Omega), which exists for Omega below a certain critical value, Omega((S=1))(cr). This implies that the VSs with S=1 are destabilized in the weak-coupling limit by the rotation. On the contrary, VSs with S=2, that are known to be unstable in the standard DNLS equation, with Omega=0, are stabilized by the rotation in region 0 < C < C-cr((S=2)), with C-cr((S=2)) growing as a function of Omega. Quadrupole and octupole on-axis solitons are considered too, their stability regions being weakly affected by Omega not equal 0.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Limiting solitons and kinks in two-dimensional discrete systems
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 625 - 631
  • [42] Two-dimensional discrete Ginzburg-Landau solitons
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Hizanidis, Kyriakos
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [43] Limiting solitons and kinks in two-dimensional discrete systems
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (05) : 625 - 631
  • [44] DARBOUX INTEGRABILITY OF DISCRETE TWO-DIMENSIONAL TODA LATTICES
    Smirnov, S. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 182 (02) : 189 - 210
  • [45] Darboux integrability of discrete two-dimensional Toda lattices
    S. V. Smirnov
    Theoretical and Mathematical Physics, 2015, 182 : 189 - 210
  • [46] Unstaggered-staggered solitons on one- and two-dimensional two -component discrete nonlinear Schr?dinger lattices
    Van Gorder, Robert A.
    Krause, Andrew L.
    Malomed, Boris A.
    Kaup, D. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
  • [47] Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms
    Williams, R. A.
    Pillet, J. D.
    Al-Assam, S.
    Fletcher, B.
    Shotter, M.
    Foot, C. J.
    OPTICS EXPRESS, 2008, 16 (21): : 16977 - 16983
  • [48] Alternate solitons:: Nonlinearly managed one- and two-dimensional solitons in optical lattices
    Gubeskys, A
    Malomed, BA
    Merhasin, IM
    STUDIES IN APPLIED MATHEMATICS, 2005, 115 (02) : 255 - 277
  • [49] Two-color surface solitons in two-dimensional quadratic photonic lattices
    Molina, Mario I.
    Kivshar, Yuri S.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (08) : 1545 - 1548
  • [50] Subwavelength solitons and Faraday waves in two-dimensional lattices of metal nanoparticles
    Noskov, Roman E.
    Smirnova, Daria A.
    Kivshar, Yuri S.
    OPTICS LETTERS, 2013, 38 (14) : 2554 - 2556