Two-dimensional discrete solitons in rotating lattices

被引:30
|
作者
Cuevas, Jesus [1 ]
Malomed, Boris A. [2 ]
Kevrekidis, P. G. [3 ]
机构
[1] Escuela Univ Politecn, Dept Fis Aplicada I, Grp Fis No Lineal, Seville 41011, Spain
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevE.76.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a two-dimensional discrete nonlinear Schrodinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two types of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance R from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities S=1 and 2. At a fixed value of rotation frequency Omega, a stability interval for the FSs is found in terms of the lattice coupling constant C, 0 < C < C-cr(R), with monotonically decreasing C-cr(R). VSs with S=1 have a stability interval, (C) over tilde ((S=1))(cr)(Omega)< C < C-cr((S=1))(Omega), which exists for Omega below a certain critical value, Omega((S=1))(cr). This implies that the VSs with S=1 are destabilized in the weak-coupling limit by the rotation. On the contrary, VSs with S=2, that are known to be unstable in the standard DNLS equation, with Omega=0, are stabilized by the rotation in region 0 < C < C-cr((S=2)), with C-cr((S=2)) growing as a function of Omega. Quadrupole and octupole on-axis solitons are considered too, their stability regions being weakly affected by Omega not equal 0.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Dynamics of vector solitons and vortices in two-dimensional photonic lattices
    Rodas-Verde, MI
    Michinel, H
    Kivshar, YS
    OPTICS LETTERS, 2006, 31 (05) : 607 - 609
  • [32] Parametric solitons in two-dimensional lattices of purely nonlinear origin
    Gallo, Katia
    Pasquazi, Alessia
    Stivala, Salvatore
    Assanto, Gaetano
    PHYSICAL REVIEW LETTERS, 2008, 100 (05)
  • [33] Stability of solitons in time-modulated two-dimensional lattices
    Dror, Nir
    Malomed, Boris A.
    NONLINEAR DYNAMICS, 2018, 91 (03) : 1733 - 1753
  • [34] Two-dimensional flat-band solitons in superhoneycomb lattices
    Shen, Shuang
    Zhang, Yiqi
    Kartashov, Yaroslav V.
    Li, Yongdong
    Konotop, Vladimir V.
    NANOPHOTONICS, 2024, 13 (21) : 4047 - 4056
  • [35] Solitons in binary compounds with stacked two-dimensional honeycomb lattices
    Muten, James H.
    Frankland, Louise H.
    Mccann, Edward
    PHYSICAL REVIEW B, 2024, 109 (16)
  • [36] Surface defect gap solitons in two-dimensional optical lattices
    Meng, Yun-Ji
    Liu, You-Wen
    Tang, Yu-Huang
    CHINESE PHYSICS B, 2012, 21 (07)
  • [37] Stability of solitons in time-modulated two-dimensional lattices
    Nir Dror
    Boris A. Malomed
    Nonlinear Dynamics, 2018, 91 : 1733 - 1753
  • [38] Collisions between discrete spatiotemporal dissipative Ginzburg-Landau solitons in two-dimensional photonic lattices
    Mihalache, Dumitru
    Mazilu, Dumitru
    Lederer, Falk
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (01): : 77 - 86
  • [39] Discrete elliptic solitons in two-dimensional waveguide arrays
    叶芳伟
    董亮伟
    王建东
    蔡田
    李永平
    Chinese Optics Letters, 2005, (04) : 227 - 229
  • [40] Discrete elliptic solitons in two-dimensional waveguide arrays
    Ye, Fangwei
    Dong, Liangwei
    Wang, Jiandong
    Cai, Tian
    Li, Yong-Ping
    Chinese Optics Letters, 2005, 3 (04) : 227 - 229