Two-dimensional discrete solitons in rotating lattices

被引:30
|
作者
Cuevas, Jesus [1 ]
Malomed, Boris A. [2 ]
Kevrekidis, P. G. [3 ]
机构
[1] Escuela Univ Politecn, Dept Fis Aplicada I, Grp Fis No Lineal, Seville 41011, Spain
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevE.76.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a two-dimensional discrete nonlinear Schrodinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two types of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance R from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities S=1 and 2. At a fixed value of rotation frequency Omega, a stability interval for the FSs is found in terms of the lattice coupling constant C, 0 < C < C-cr(R), with monotonically decreasing C-cr(R). VSs with S=1 have a stability interval, (C) over tilde ((S=1))(cr)(Omega)< C < C-cr((S=1))(Omega), which exists for Omega below a certain critical value, Omega((S=1))(cr). This implies that the VSs with S=1 are destabilized in the weak-coupling limit by the rotation. On the contrary, VSs with S=2, that are known to be unstable in the standard DNLS equation, with Omega=0, are stabilized by the rotation in region 0 < C < C-cr((S=2)), with C-cr((S=2)) growing as a function of Omega. Quadrupole and octupole on-axis solitons are considered too, their stability regions being weakly affected by Omega not equal 0.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Instability of two-dimensional solitons in discrete systems
    Laedke, E.W.
    Spatschek, K.H.
    Mezentsev, V.K.
    Musher, S.L.
    Ryzhenkova, I.V.
    Turitsyn, S.K.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1995, 62 (08):
  • [22] Discrete breathers in two-dimensional nonlinear lattices
    Feng, Bao-Feng
    Kawahara, Takuji
    WAVE MOTION, 2007, 45 (1-2) : 68 - 82
  • [23] Observation of two-dimensional discrete surface solitons and surface gap solitons
    Wang, Xiaosheng
    Bezryadina, Anna
    Chen, Zhigang
    Makris, K. G.
    Christodoulides, D. N.
    Stegeman, G. I.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 1435 - +
  • [24] Exciton-Polariton Gap Solitons in Two-Dimensional Lattices
    Cerda-Mendez, E. A.
    Sarkar, D.
    Krizhanovskii, D. N.
    Gavrilov, S. S.
    Biermann, K.
    Skolnick, M. S.
    Santos, P. V.
    PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [25] Dipole solitons in optically induced two-dimensional photonic lattices
    Yang, JK
    Makasyuk, I
    Bezryadina, A
    Chen, Z
    OPTICS LETTERS, 2004, 29 (14) : 1662 - 1664
  • [26] Oscillations of two-dimensional solitons in harmonic and Bessel optical lattices
    Kartashov, YV
    Vysloukh, VA
    Torner, L
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [27] Vortex and dipole solitons in complex two-dimensional nonlinear lattices
    Ablowitz, Mark J.
    Antar, Nalan
    Bakirtas, Ilkay
    Ilan, Boaz
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [28] Surface defect gap solitons in two-dimensional optical lattices
    孟云吉
    刘友文
    唐宇煌
    ChinesePhysicsB, 2012, 21 (07) : 318 - 323
  • [29] SOLITONS AND NON-LINEAR RESONANCE IN TWO-DIMENSIONAL LATTICES
    OSTROVSKY, LA
    PAPKO, VV
    STEPANYANTS, YA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1980, 78 (02): : 831 - 841
  • [30] Symmetric interactions of plane solitons in two-dimensional nonlinear lattices
    Nikitenkova, Svetlana
    Stepanyants, Yury
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 114