Two-dimensional discrete solitons in rotating lattices

被引:30
|
作者
Cuevas, Jesus [1 ]
Malomed, Boris A. [2 ]
Kevrekidis, P. G. [3 ]
机构
[1] Escuela Univ Politecn, Dept Fis Aplicada I, Grp Fis No Lineal, Seville 41011, Spain
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevE.76.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a two-dimensional discrete nonlinear Schrodinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two types of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance R from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities S=1 and 2. At a fixed value of rotation frequency Omega, a stability interval for the FSs is found in terms of the lattice coupling constant C, 0 < C < C-cr(R), with monotonically decreasing C-cr(R). VSs with S=1 have a stability interval, (C) over tilde ((S=1))(cr)(Omega)< C < C-cr((S=1))(Omega), which exists for Omega below a certain critical value, Omega((S=1))(cr). This implies that the VSs with S=1 are destabilized in the weak-coupling limit by the rotation. On the contrary, VSs with S=2, that are known to be unstable in the standard DNLS equation, with Omega=0, are stabilized by the rotation in region 0 < C < C-cr((S=2)), with C-cr((S=2)) growing as a function of Omega. Quadrupole and octupole on-axis solitons are considered too, their stability regions being weakly affected by Omega not equal 0.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Discrete surface solitons in two-dimensional anisotropic photonic lattices
    Vicencio, Rodrigo A.
    Flach, Sergej
    Molina, Mario I.
    Kivshar, Yuri S.
    PHYSICS LETTERS A, 2007, 364 (3-4) : 274 - 276
  • [2] Two-dimensional matter-wave solitons in rotating optical lattices
    Sakaguchi, Hidetsugu
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2007, 75 (01):
  • [3] Two-dimensional solitons in nonlinear lattices
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Vysloukh, Victor A.
    Torner, Lluis
    OPTICS LETTERS, 2009, 34 (06) : 770 - 772
  • [4] Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
    Fleischer, JW
    Segev, M
    Efremidis, NK
    Christodoulides, DN
    NATURE, 2003, 422 (6928) : 147 - 150
  • [5] Spatiotemporal discrete Ginzburg-Landau solitons in two-dimensional photonic lattices
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 : 255 - 266
  • [6] Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices
    Chen, Huaiyu
    Liu, Yan
    Zhang, Qiang
    Shi, Yuhan
    Pang, Wei
    Li, Yongyao
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [7] Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers
    Chen, Zhaopin
    Liu, Jingfeng
    Fu, Shenhe
    Li, Yongyao
    Malomed, Boris A.
    OPTICS EXPRESS, 2014, 22 (24): : 29679 - 29692
  • [8] Spatiotemporal discrete Ginzburg-Landau solitons in two-dimensional photonic lattices
    D. Mihalache
    D. Mazilu
    F. Lederer
    The European Physical Journal Special Topics, 2009, 173 : 255 - 266
  • [9] Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
    Jason W. Fleischer
    Mordechai Segev
    Nikolaos K. Efremidis
    Demetrios N. Christodoulides
    Nature, 2003, 422 : 147 - 150
  • [10] Solitons on two-dimensional anharmonic square lattices
    Astakhova, TY
    Vinogradov, GA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3593 - 3605