A counterexample for the geometric traveling salesman problem in the Heisenberg group

被引:0
|
作者
Juillet, Nicolas [1 ,2 ]
机构
[1] Univ Grenoble 1, Inst Fourier BP 74, UMR 5582, F-38402 St Martin Dheres, France
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
Heisenberg group; Carnot-Caratheodory metric; rectifiable curve; Traveling Salesman Problem; RECTIFIABLE CURVES; SPACES; SUBSETS; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in characterizing the compact sets of the Heisenberg group that are contained in a curve of finite length. Ferrari, Franchi and Pajot recently gave a sufficient condition for those sets, adapting a necessary and sufficient condition due to P. Jones in the Euclidean setting. We prove that this condition is not necessary.
引用
收藏
页码:1035 / 1056
页数:22
相关论文
共 50 条
  • [1] The geometric traveling salesman problem in the Heisenberg group
    Ferrari, Fausto
    Franchi, Bruno
    Pajot, Herve
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (02) : 437 - 480
  • [2] THE TRAVELING SALESMAN PROBLEM IN THE HEISENBERG GROUP: UPPER BOUNDING CURVATURE
    Li, Sean
    Schul, Raanan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) : 4585 - 4620
  • [3] An upper bound for the length of a traveling salesman path in the Heisenberg group
    Li, Sean
    Schul, Raanan
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 391 - 417
  • [4] The geometric maximum traveling salesman problem
    Barvinok, A
    Fekete, SP
    Johnson, DS
    Tamir, A
    Woeginger, GJ
    Woodroofe, R
    JOURNAL OF THE ACM, 2003, 50 (05) : 641 - 664
  • [5] An Algorithm Framework for Traveling Salesman Problem Using Geometric Information
    Zhang, Runfa
    Qiu, Jianlong
    Chen, Xiangyong
    Guo, Ming
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1748 - 1752
  • [6] Group Search Optimization to solve Traveling Salesman Problem
    Akhand, M. A. H.
    Junaed, A. B. M.
    Hossain, Md. Forhad
    Murase, K.
    2012 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2012, : 72 - 77
  • [7] A new lower bound for the geometric traveling salesman problem in terms of discrepancy
    Steinerberger, Stefan
    OPERATIONS RESEARCH LETTERS, 2010, 38 (04) : 318 - 319
  • [8] Animation of the Traveling Salesman Problem
    ElAarag, Hala
    Romano, Sam
    2012 PROCEEDINGS OF IEEE SOUTHEASTCON, 2012,
  • [9] Traveling Salesman Problem with Clustering
    Schneider, Johannes J.
    Bukur, Thomas
    Krause, Antje
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (05) : 767 - 784
  • [10] Traveling salesman problem of segments
    Xu, JH
    Lin, ZY
    Yang, Y
    Berezney, R
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2004, 14 (1-2) : 19 - 40