3-D Active Contour Segmentation Based on Sparse Linear Combination of Training Shapes (SCoTS)

被引:33
作者
Farhangi, M. Mehdi [1 ]
Frigui, Hichem [2 ]
Seow, Albert [3 ]
Amini, Amir A. [1 ]
机构
[1] Univ Louisville, Med Imaging Lab, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Comp Engn & Comp Sci, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Radiol, Louisville, KY 40202 USA
关键词
Adaptive shape prior; dictionary learning; level set segmentation; lung nodules; sparse representation; X-ray CT; LUNG NODULE SEGMENTATION; THORACIC CT SCANS; PULMONARY NODULES; ROBUST; IMAGES; SPEED;
D O I
10.1109/TMI.2017.2720119
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
SCoTS captures a sparse representation of shapes in an input image through a linear span of previously delineated shapes in a training repository. The model updates shape prior over level set iterations and captures variabilities in shapes by a sparse combination of the training data. The level set evolution is therefore driven by a data term as well as a term capturing valid prior shapes. During evolution, the shape prior influence is adjusted based on shape reconstruction, with the assigned weight determined from the degree of sparsity of the representation. For the problem of lung nodule segmentation in X-ray CT, SCoTS offers a unified framework, capable of segmenting nodules of all types. Experimental validations are demonstrated on 542 3-D lung nodule images from the LIDC-IDRI database. Despite its generality, SCoTS is competitive with domain specific state of the art methods for lung nodule segmentation.
引用
收藏
页码:2239 / 2249
页数:11
相关论文
共 36 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Soft computing approach to 3D lung nodule segmentation in CT [J].
Badura, P. ;
Pietka, E. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 53 :230-243
[3]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[4]   Lung nodule segmentation in chest computed tomography using a novel background estimation method [J].
Cavalcanti, Pablo G. ;
Shirani, Shahram ;
Scharcanski, Jacob ;
Fong, Crystal ;
Meng, Jane ;
Castelli, Jane ;
Koff, David .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2016, 6 (01) :16-24
[5]  
Cha JW, 2016, IEEE ENG MED BIO, P1284, DOI 10.1109/EMBC.2016.7590941
[6]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[7]   Vessel attachment nodule segmentation using integrated active contour model based on fuzzy speed function and shape-intensity joint Bhattacharya distance [J].
Chen, Kan ;
Li, Bin ;
Tian, Lian-fang ;
Zhu, Wen-bo ;
Bao, Ying-han .
SIGNAL PROCESSING, 2014, 103 :273-284
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Kernel density estimation and intrinsic alignment for shape priors in level set segmentation [J].
Cremers, Daniel ;
Osher, Stanley J. ;
Soatto, Stefano .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 69 (03) :335-351
[10]   Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach [J].
Dehmeshi, Jamshid ;
Amin, Hamdan ;
Valdivieso, Manlio ;
Ye, Xujiong .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) :467-480