Noise sensitivity and Voronoi percolation

被引:10
作者
Ahlberg, Daniel [1 ]
Baldasso, Rangel [2 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
基金
瑞典研究理事会;
关键词
noise sensitivity; Voronoi percolation; conservative perturbations; CRITICAL PROBABILITY;
D O I
10.1214/18-EJP233
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study noise sensitivity and threshold phenomena for Poisson Voronoi percolation on R-2. In the setting of Boolean functions, both threshold phenomena and noise sensitivity can be understood via the study of randomized algorithms. Together with a simple discretization argument, such techniques apply also to the continuum setting. Via the study of a suitable algorithm we show that box-crossing events in Voronoi percolation are noise sensitive and present a threshold phenomenon with polynomial window. We also study the effect of other kinds of perturbations, and emphasize the fact that the techniques we use apply for a broad range of models.
引用
收藏
页数:21
相关论文
共 23 条
[1]   Sharpness of the phase transition for continuum percolation in R2 [J].
Ahlberg, Daniel ;
Tassion, Vincent ;
Teixeira, Augusto .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) :525-581
[2]   Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome? [J].
Ahlberg, Daniel ;
Steif, Jeffrey E. ;
Pete, Gabor .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04) :2135-2161
[3]   Quenched Voronoi percolation [J].
Ahlberg, Daniel ;
Griffiths, Simon ;
Morris, Robert ;
Tassion, Vincent .
ADVANCES IN MATHEMATICS, 2016, 286 :889-911
[4]   NOISE SENSITIVITY IN CONTINUUM PERCOLATION [J].
Ahlberg, Daniel ;
Broman, Erik ;
Griffiths, Simon ;
Morris, Robert .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) :847-899
[5]   Conformal invariance of Voronoi percolation [J].
Benjamini, I ;
Schramm, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (01) :75-107
[6]  
Benjamini I, 1999, PUBL MATH, P5
[7]   The critical probability for random Voronoi percolation in the plane is 1/2 [J].
Bollobas, Bela ;
Riordan, Oliver .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :417-468
[8]   Exclusion sensitivity of Boolean functions [J].
Broman, Erik I. ;
Garban, Christophe ;
Steif, Jeffrey E. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (3-4) :621-663
[9]  
Duminil-Copin Hugo, PREPRINT
[10]  
Duminil-Copin Hugo, 2017, PROBABILITY THEORY R, P1