Pseudospectral vs. finite difference methods for initial value problems with discontinuous coefficients

被引:7
作者
Luo, ED [1 ]
Kreiss, HO
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
pseudospectral; finite difference; initial value problem;
D O I
10.1137/S1064827596301698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial value problem with piecewise-constant coefficients is considered. The accuracies for both finite difference methods and the pseudospectral method are analyzed, and a modification of the initial value problem is suggested. The modified problem is shown to have the same temporal period as the original problem does, and a second-order accuracy is obtained for the pseudospectral method at integral multiples of the temporal period.
引用
收藏
页码:148 / 163
页数:16
相关论文
共 9 条
[1]  
BROWN DL, 1984, MATH COMPUT, V42, P369, DOI 10.1090/S0025-5718-1984-0736442-3
[2]  
Canuto C., 1988, SPRINGER SER COMPUT
[3]   THE PSEUDOSPECTRAL METHOD - ACCURATE REPRESENTATION OF INTERFACES IN ELASTIC WAVE CALCULATIONS [J].
FORNBERG, B .
GEOPHYSICS, 1988, 53 (05) :625-637
[4]   THE PSEUDOSPECTRAL METHOD - COMPARISONS WITH FINITE-DIFFERENCES FOR THE ELASTIC WAVE-EQUATION [J].
FORNBERG, B .
GEOPHYSICS, 1987, 52 (04) :483-501
[5]   FOURIER METHOD FOR INTEGRATION OF HYPERBOLIC EQUATIONS [J].
FORNBERG, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :509-528
[6]  
FORNBERG B, IN PRESS PRACTICAL G
[7]  
GOTTLIEB D, 1977, CBMSNSF REGIONAL C S, V26
[8]  
GUSTAFSSON B, 1994, PURE APPL MATH
[9]  
KREISS HO, 1973, GARP