Construction of Hierarchical NiCo2O4@NiFe-LDH Core-Shell Heterostructure for High-performance Positive Electrode for Supercapacitor

被引:12
作者
Luo, Dapeng [1 ]
Yong, Yi [1 ]
Hou, Jiang [1 ]
Guo, Weiguang [1 ]
Liu, Hengbo [1 ]
Zhao, Xue [1 ]
Xiang, Jingrong [1 ]
Zongzong, Nima [1 ]
Han, Yuqi [1 ]
Yan, Minglei [2 ]
机构
[1] Sichuan Acad Environm Sci, Chengdu 610041, Peoples R China
[2] Sichuan Agr Univ, Coll Water Conservancy & Hydropower Engn, Yaan 625014, Sichuan, Peoples R China
来源
CHEMNANOMAT | 2022年 / 8卷 / 07期
关键词
heterostructure; NiCo2O4; NiFe-LDH; positive electrode; supercapacitors; LAYERED DOUBLE HYDROXIDE; FACILE SYNTHESIS; ARRAYS; ENERGY; NANOTUBES; NICO2O4; DESIGN; FOAM;
D O I
10.1002/cnma.202200137
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, the hierarchical NiCo2O4@NiFe-layered double hydroxide (NiCo2O4@NiFe-LDH) heterostructure has been successfully synthesized by sequential hydrothermal method, heat treatment and electrodeposition, which is investigated as high-performance positive electrode for supercapacitor. In this unique structure, on the one hand, the NiCo2O4 as the scaffold provide high conductivity, which accelerates the electron transfer. On other hand, the NiFe-LDH nanosheets increase the surface area, which offers abundant active sites for electrochemical reaction. Furthermore, the three-dimensional (3D) hierarchical structures are beneficial to the diffusion for electrolyte ions. Hence, the synergistic effect between NiCo2O4 and NiFe-LDH endows the optimal NiCo2O4@NiFe-LDH-150/CC with excellent electrochemical performance, such as high areal specific capacitance (1.09 F cm(-2)@1 mA cm(-2)), small charge-transfer resistance (0.35 omega) and superior cycling stability. This study demonstrates the NiCo2O4@NiFe-LDH core-shell heterostructures are promising positive electrode material for supercapacitors.
引用
收藏
页数:7
相关论文
共 43 条
[1]  
[Anonymous], 2021, ACS APPL ENERG MATER, V4, P3983
[2]  
[Anonymous], 2017, ANGEW CHEM, V129, P860
[3]   Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for Ionogel Based Supercapacitors [J].
Cho, Kyung Gook ;
Kim, Hee Soo ;
Jang, Seong Su ;
Kyung, Hyuna ;
Kang, Min Seok ;
Lee, Keun Hyung ;
Yoo, Won Cheol .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
[4]   A Self-Charging Hybrid Electric Power Device with High Specific Energy and Power [J].
Fu, Xudong ;
Xia, Zhangxun ;
Sun, Ruth ;
An, Hongyu ;
Qi, Fulai ;
Wang, Suli ;
Liu, Qingting ;
Sun, Gongquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2425-2432
[5]   Ultrathin NiFe-layered double hydroxide decorated NiCo2O4 arrays with enhanced performance for supercapacitors [J].
Gao, Haixing ;
Cao, Yang ;
Chen, Yong ;
Liu, Zheng ;
Guo, Mingliang ;
Ding, Shujiang ;
Tu, Jinchun ;
Qi, Junlei .
APPLIED SURFACE SCIENCE, 2019, 465 :929-936
[6]   NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors [J].
Gao, Xiangyang ;
Zhao, Yafei ;
Dai, Kaiqing ;
Wang, Jingtao ;
Zhang, Bing ;
Shen, Xiangjian .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[7]   Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor [J].
Gao, Xiaorui ;
Liu, Ximeng ;
Wu, Dajun ;
Qian, Bin ;
Kou, Zongkui ;
Pan, Zhenghui ;
Pang, Yajun ;
Miao, Linqing ;
Wang, John .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (36)
[8]   MXene and MoS3-x Coated 3D-Printed Hybrid Electrode for Solid-State Asymmetric Supercapacitor [J].
Ghosh, Kalyan ;
Pumera, Martin .
SMALL METHODS, 2021, 5 (08)
[9]   Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors [J].
Gopi, Chandu V. V. Muralee ;
Vinodh, Rajangam ;
Sambasivam, Sangaraju ;
Obaidat, Ihab M. ;
Singh, Saurabh ;
Kim, Hee-Je .
CHEMICAL ENGINEERING JOURNAL, 2020, 381
[10]   Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage [J].
Gur, Turgut M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2696-2767