On the Elasticity of Generalized Arithmetical Congruence Monoids

被引:7
|
作者
Chapman, S. T. [1 ]
Steinberg, David [2 ]
机构
[1] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
[2] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
基金
美国国家科学基金会;
关键词
Congruence monoid; non-unique factorization; elasticity;
D O I
10.1007/s00025-010-0062-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a and b be positive integers with a <= b and a(2) a (mod b). The set M(a, b) = {n is an element of N vertical bar n = a(mod b)} boolean OR {1} is multiplicatively closed and known as an arithmetical congruence monoid (or ACM). It is well known that unique factorization need not occur in ACMs. In this paper, we investigate factorization results when we consider only elements of M(a, b) of sufficiently large size. More specifically, if M(a, b) is an ACM, we offer results concerning the elasticity of generalized ACMs (or GACMs) of the form M(r)(a, b) = {a+ kb is an element of M(a, b)vertical bar k >= r} boolean OR {1} where r is a nonnegative integer. We characterize when a generalized ACM is half-factorial (i.e. lengths of irreducible factorizations are constant). Moreover, we offer conditions, which force the elasticity to be infinite and derive a formula for finite elasticity in the case a not equal 1.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 50 条
  • [1] On the Elasticity of Generalized Arithmetical Congruence Monoids
    S. T. Chapman
    David Steinberg
    Results in Mathematics, 2010, 58 : 221 - 231
  • [2] A theorem on accepted elasticity in certain local arithmetical congruence monoids
    Banister, M.
    Chaika, J.
    Chapman, S. T.
    Meyerson, W.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01): : 79 - 86
  • [3] A theorem on accepted elasticity in certain local arithmetical congruence monoids
    M. Banister
    J. Chaika
    S. T. Chapman
    W. Meyerson
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2009, 79 : 79 - 86
  • [4] Atomic density of arithmetical congruence monoids
    Olsson, Nils
    O'Neill, Christopher
    Rawling, Derek
    SEMIGROUP FORUM, 2024, 108 (02) : 432 - 437
  • [5] Accepted Elasticity in Local Arithmetic Congruence Monoids
    Crawford, Lorin
    Ponomarenko, Vadim
    Steinberg, Jason
    Williams, Marla
    RESULTS IN MATHEMATICS, 2014, 66 (1-2) : 227 - 245
  • [6] Accepted Elasticity in Local Arithmetic Congruence Monoids
    Lorin Crawford
    Vadim Ponomarenko
    Jason Steinberg
    Marla Williams
    Results in Mathematics, 2014, 66 : 227 - 245
  • [7] Congruence monoids
    Geroldinger, A
    Halter-Koch, F
    ACTA ARITHMETICA, 2004, 112 (03) : 263 - 296
  • [8] On congruence compact monoids
    Bulman-Fleming, S
    Hotzel, E
    Normak, P
    MATHEMATIKA, 1999, 46 (91) : 205 - 224
  • [9] ARITHMETIC OF CONGRUENCE MONOIDS
    Fujiwara, Arielle
    Gibson, Joseph
    Jenssen, Matthew O.
    Montealegre, Daniel
    Ponomarenko, Vadim
    Tenzer, Ari
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3407 - 3421
  • [10] A congruence of plane monoids
    De Vries, J
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1927, 30 (1/5): : 566 - 568