Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications

被引:29
作者
Malevu, T. D. [1 ]
Mwankemwa, B. S. [2 ,3 ]
Motloung, S., V [4 ]
Tshabalala, K. G. [5 ]
Ocaya, R. O. [5 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
[2] Univ Pretoria, Dept Phys, P Bag X20, Hatfield, South Africa
[3] Univ Dodoma, Coll Nat & Math Sci, Sch Phys Sci, Dept Phys, POB 338, Dodoma, Tanzania
[4] NMMU, Dept Phys, POB 77000, ZA-6031 Port Elizabeth, South Africa
[5] Univ Free State, Dept Phys, P Bag X13, ZA-9866 Phuthaditjhaba, South Africa
基金
新加坡国家研究基金会;
关键词
Anatase TiO2 nanocrystals; Annealing temperature; Phase transformation; Hydrothermal crystal growth; EXPOSED; 001; FACETS; ANATASE; NANOSHEETS;
D O I
10.1016/j.physe.2018.10.028
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study investigates the effect of annealing temperature (AT) on structure, morphology and optical properties of hydrothermally synthesized TiO2 nanocrystals. Selected-Area Diffraction (SAED) confirmed high quality monocrystals. XRD and Raman spectroscopy indicate only anatase and rutile phases. At high temperature, the (101) and (001) are preferred. PL emission peaks appear at 407, 416 and 493 nm, which can be attributed to photo-excited electron-hole pairs, band-edge excitons and oxygen vacancy defects, respectively. UV-Vis spectroscopy indicates that AT over the 200-600 degrees C temperature range causes the band gap to decrease from 3.08 eV to 2.73 eV. Hydrothermal synthesis followed by annealing at 600 degrees C is found to be a good route for high-purity, nanocrystalline anatase-phase TiO2 with the preferred {001} orientation that is thought to enhance solar cell performance.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 24 条
[1]  
Abidi I. H., 2006, ROYAL SOC CHEM, V6, P7093
[2]  
Ali A., 2014, EUROPEAN SCI J, V2, P447
[3]   Electronic properties of TiO2-based materials characterized by high Ti3+ self-doping and low recombination rate of electron-hole pairs [J].
Aronne, A. ;
Fantauzzi, M. ;
Imparato, C. ;
Atzei, D. ;
De Stefano, L. ;
D'Errico, G. ;
Sannino, F. ;
Rea, I. ;
Pirozzi, D. ;
Elsener, B. ;
Pernice, P. ;
Rossi, A. .
RSC ADVANCES, 2017, 7 (04) :2373-2381
[4]   Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells [J].
Chu, Liang ;
Qin, Zhengfei ;
Yang, Jianping ;
Li, Xing'ao .
SCIENTIFIC REPORTS, 2015, 5
[5]   Synthesis of Anatase TiO2 Nanocrystals with Exposed {001} Facets [J].
Dai, Yunqian ;
Cobley, Claire M. ;
Zeng, Jie ;
Sun, Yueming ;
Xia, Younan .
NANO LETTERS, 2009, 9 (06) :2455-2459
[6]   Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra [J].
Dhanalakshmi, J. ;
Iyyapushpam, S. ;
Nishanthi, S.T. ;
Malligavathy, M. ;
Padiyan, D. Pathinettam .
Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8 (01)
[7]   Brookite, the Least Known TiO2 Photocatalyst [J].
Di Paola, Agatino ;
Bellardita, Marianna ;
Palmisano, Leonardo .
CATALYSTS, 2013, 3 (01) :36-73
[8]   Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets [J].
Ding, Jie ;
Huang, Zhennan ;
Zhu, Jihao ;
Kou, Shengzhong ;
Zhang, Xiaobin ;
Yang, Hangsheng .
SCIENTIFIC REPORTS, 2015, 5
[9]   TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis [J].
Edy, Riyanto ;
Zhao, Yuting ;
Huang, Gaoshan S. ;
Shi, Jianjun J. ;
Zhang, Jing ;
Solovev, Alexander A. ;
Mei, Yongfeng .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2016, 26 (05) :493-497
[10]   Synthesis of anatase TiO2 with exposed (001) facets grown on N-doped reduced graphene oxide for enhanced hydrogen storage [J].
Gohari-Bajestani, Zahra ;
Akhlaghi, Omid ;
Yurum, Yuda ;
Yurum, Alp .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (09) :6096-6103