Geospatial Grid Display of Internet Public Opinion Information about Natural Disasters

被引:0
作者
Lv, Xuefeng [1 ]
Chen, Dong [2 ]
机构
[1] Natl Disaster Reduct Ctr China, Key Lab Integrated Disaster Assessment & Risk Gov, Minist Civil Affairs, Beijing, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
来源
2015 International Conference on Network and Information Systems for Computers (ICNISC) | 2015年
关键词
Internet public opinion; natural disaster information; global subdivision grid; geospatial grid display; data mining; SYSTEM;
D O I
10.1109/ICNISC.2015.15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In order to more efficiently manage and display the Internet public opinion information about natural disasters for the serious natural disaster relief decision support, a kind of geospatial grid display method based the global subdivision grid is presented. By extracting the location information of the Internet public opinion information about natural disasters, the related disaster information can be identified and displayed in the global subdivision grid framework of the GeoSOT. By this method, it can achieve the information statistics at different grid scale and be helpful to improve the fast location positioning and service of the Internet public opinion information about natural disasters.
引用
收藏
页码:399 / 403
页数:5
相关论文
共 14 条
[1]  
Cai M. Z., 2012, JOURNALISM RES WORLD, V10, P14
[2]  
Cao X. Y., 2014, CHINESE J MANAGEMENT, V22, P82
[3]  
Cheng C. Q., 2012, INTRO SPATIAL INFORM, P51
[4]  
Fu W. Q., 2012, GEOSPATIAL INFORM, V10, P35
[5]  
Gang L, 2014, Knowl, Learn Manag, V2, P111
[6]  
Guo J. Z., 2012, SURVEYING MAPPING GE, V28, P5
[7]  
Li J., 2014, J GEOMATICS, V39, P38
[8]  
Lv X. F., 2014, HIGH TECHNOLOGY LETT, V24, P333
[9]   A discrete square global grid system based on the parallels plane projection [J].
Ma, Ting ;
Zhou, Chenghu ;
Xie, Yichun ;
Qin, Biao ;
Ou, Yang .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2009, 23 (10) :1297-1313
[10]  
Sahr K., 2003, Cartography and Geographic Information Science, V30, P121, DOI [DOI 10.1559/152304003100011090, 10.1559/152304003100011090l, 10.1559/152304003100011090]