A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p

被引:1509
作者
Taunton, J
Hassig, CA
Schreiber, SL
机构
[1] HARVARD UNIV, HOWARD HUGHES MED INST, DEPT CHEM & BIOL CHEM, CAMBRIDGE, MA 02138 USA
[2] HARVARD UNIV, HOWARD HUGHES MED INST, DEPT MOLEC & CELLULAR BIOL, CAMBRIDGE, MA 02138 USA
关键词
D O I
10.1126/science.272.5260.408
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Trapoxin is a microbially derived cyclotetrapeptide that inhibits histone deacetylation in vivo and causes mammalian cells to arrest in the cell cycle. A trapoxin affinity matrix was used to isolate two nuclear proteins that copurified with histone deacetylase activity. Both proteins were identified by peptide microsequencing, and a complementary DNA encoding the histone deacetylase catalytic subunit (HD1) was cloned from a human Jurkat T cell library. As the predicted protein is very similar to the yeast transcriptional regulator Rpd3p, these results support a role for histone deacetylase as a key regulator of eukaryotic transcription.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 20 条
[1]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[2]   BIPARTITE STRUCTURE OF AN EARLY MEIOTIC UPSTREAM ACTIVATION SEQUENCE FROM SACCHAROMYCES-CEREVISIAE [J].
BOWDISH, KS ;
MITCHELL, AP .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2172-2181
[3]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[4]   IDENTIFICATION OF CALCINEURIN AS A KEY SIGNALING ENZYME IN LYMPHOCYTE-T ACTIVATION [J].
CLIPSTONE, NA ;
CRABTREE, GR .
NATURE, 1992, 357 (6380) :695-697
[5]   HISTONE H3 AND H4 N-TERMINI INTERACT WITH SIR3 AND SIR4 PROTEINS - A MOLECULAR-MODEL FOR THE FORMATION OF HETEROCHROMATIN IN YEAST [J].
HECHT, A ;
LAROCHE, T ;
STRAHLBOLSINGER, S ;
GASSER, SM ;
GRUNSTEIN, M .
CELL, 1995, 80 (04) :583-592
[6]   GENETIC-EVIDENCE FOR AN INTERACTION BETWEEN SIR3 AND HISTONE-H4 IN THE REPRESSION OF THE SILENT MATING LOCI IN SACCHAROMYCES-CEREVISIAE [J].
JOHNSON, LM ;
KAYNE, PS ;
KAHN, ES ;
GRUNSTEIN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6286-6290
[7]  
KIJIMA M, 1993, J BIOL CHEM, V268, P22429
[8]   IDENTIFICATION OF A GENE ENCODING A YEAST HISTONE H4 ACETYLTRANSFERASE [J].
KLEFF, S ;
ANDRULIS, ED ;
ANDERSON, CW ;
STERNGLANZ, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24674-24677
[9]   A POSITIVE ROLE FOR HISTONE ACETYLATION IN TRANSCRIPTION FACTOR ACCESS TO NUCLEOSOMAL DNA [J].
LEE, DY ;
HAYES, JJ ;
PRUSS, D ;
WOLFFE, AP .
CELL, 1993, 72 (01) :73-84
[10]   THE CENTROMERE AND PROMOTER FACTOR-I, CPF1, OF SACCHAROMYCES-CEREVISIAE MODULATES GENE ACTIVITY THROUGH A FAMILY OF FACTORS INCLUDING SPT21, RPD1 (SIN3), RPD3 AND CCR4 [J].
MCKENZIE, EA ;
KENT, NA ;
DOWELL, SJ ;
MORENO, F ;
BIRD, LE ;
MELLOR, J .
MOLECULAR & GENERAL GENETICS, 1993, 240 (03) :374-386