Regulation of protein-ligand binding affinity by hydrogen bond pairing

被引:515
作者
Chen, Deliang [1 ]
Oezguen, Numan [2 ,3 ]
Urvil, Petri [2 ,3 ]
Ferguson, Colin [4 ]
Dann, Sara M. [5 ]
Savidge, Tor C. [2 ,3 ]
机构
[1] Gannan Normal Univ, Key Lab Organopharmaceut Chem Jiangxi Prov, Chem & Chem Engn Coll, Ganzhou 341000, Jiangxi, Peoples R China
[2] Baylor Coll Med, Dept Pathol & Immunol, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Texas Childrens Microbiome Ctr, Houston, TX 77030 USA
[4] Echelon Biosci Inc, Salt Lake City, UT 84108 USA
[5] Univ Texas Med Branch, Dept Internal Med, Galveston, TX 77555 USA
来源
SCIENCE ADVANCES | 2016年 / 2卷 / 03期
基金
美国国家科学基金会;
关键词
ACTIVE-SITE; SCORING FUNCTIONS; CYANURIC ACID; AMINO-ACIDS; INHIBITORS; COMPENSATION; RECOGNITION; CATALYSIS; MOLECULE; ROTATION;
D O I
10.1126/sciadv.1501240
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [2] Learning protein-ligand binding affinity with atomic environment vectors
    Meli, Rocco
    Anighoro, Andrew
    Bodkin, Mike J.
    Morris, Garrett M.
    Biggin, Philip C.
    JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
  • [3] Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction
    Rezaei, Mohammad A.
    Li, Yanjun
    Wu, Dapeng
    Li, Xiaolin
    Li, Chenglong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 407 - 417
  • [4] Protein-ligand binding affinity prediction exploiting sequence constituent homology
    Abdel-Rehim, Abbi
    Orhobor, Oghenejokpeme
    Hang, Lou
    Ni, Hao
    King, Ross D.
    BIOINFORMATICS, 2023, 39 (08)
  • [5] Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction
    Li, Gaili
    Yuan, Yongna
    Zhang, Ruisheng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 107
  • [6] DeepDTAF: a deep learning method to predict protein-ligand binding affinity
    Wang, Kaili
    Zhou, Renyi
    Li, Yaohang
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [7] Importance of Ligand Reorganization Free Energy in Protein-Ligand Binding-Affinity Prediction
    Yang, Chao-Yie
    Sun, Haiying
    Chen, Jianyong
    Nikolovska-Coleska, Zaneta
    Wang, Shaomeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (38) : 13709 - 13721
  • [8] Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR
    Luchinat, Enrico
    Barbieri, Letizia
    Cremonini, Matteo
    Pennestri, Matteo
    Nocentini, Alessio
    Supuran, Claudiu T.
    Banci, Lucia
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 1270 - 1281
  • [9] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [10] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300