Congruence Subgroups and Generalized Frobenius-Schur Indicators

被引:55
作者
Ng, Siu-Hung [1 ]
Schauenburg, Peter [2 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
基金
美国国家科学基金会;
关键词
VERTEX OPERATOR-ALGEBRAS; CENTRAL INVARIANTS; GAUGE EQUIVALENCE; TENSOR CATEGORIES; REPRESENTATION; CLASSIFICATION; 3-MANIFOLDS; SYMMETRY; KNOTS;
D O I
10.1007/s00220-010-1096-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce generalized Frobenius-Schur indicators for pivotal categories. In a spherical fusion category C, an equivariant indicator of an object in C is defined as a functional on the Grothendieck algebra of the quantum double Z(C) via generalized Frobenius-Schur indicators. The set of all equivariant indicators admits a natural action of the modular group. Using the properties of equivariant indicators, we prove a congruence subgroup theorem for modular categories. As a consequence, all modular representations of a modular category have finite images, and they satisfy a conjecture of Eholzer. In addition, we obtain two formulae for the generalized indicators, one of them a generalization of Bantay's second indicator formula for a rational conformal field theory. This formula implies a conjecture of Pradisi-Sagnotti-Stanev, as well as a conjecture of Borisov-Halpern-Schweigert.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 51 条
[1]   QUASI-QUANTUM GROUPS, KNOTS, 3-MANIFOLDS, AND TOPOLOGICAL FIELD-THEORY [J].
ALTSCHULER, D ;
COSTE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :83-107
[2]  
Bakalov B., 2001, U LECT SERIES, V21
[3]   The kernel of the modular representation and the Galois action in RCFT [J].
Bantay, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) :423-438
[4]   The Frobenius-Schur indicator in conformal field theory [J].
Bantay, P .
PHYSICS LETTERS B, 1997, 394 (1-2) :87-88
[5]   Comments on the links between su(3) modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards [J].
Bauer, M ;
Coste, A ;
Itzykson, C ;
Ruelle, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (02) :134-189
[6]   Systematic approach to cyclic orbifolds [J].
Borisov, L ;
Halpern, MB ;
Schweigert, C .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (01) :125-168
[7]   THE LINEAR HOMOGENEOUS GROUP .3. [J].
BRENNER, JL .
ANNALS OF MATHEMATICS, 1960, 71 (02) :210-223
[8]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[9]   REMARKS ON GALOIS SYMMETRY IN RATIONAL CONFORMAL FIELD-THEORIES [J].
COSTE, A ;
GANNON, T .
PHYSICS LETTERS B, 1994, 323 (3-4) :316-321
[10]  
COSTE A, MATHQA9909080