A template-based technique for efficient Clifford plus T-based quantum circuit implementation

被引:20
作者
Biswal, Laxmidhar [1 ]
Das, Rakesh [2 ]
Bandyopadhyay, Chandan [2 ]
Chattopadhyay, Anupam [3 ]
Rahaman, Hafizur [1 ]
机构
[1] IIEST, Sch VLSI Technol, Sibpur, W Bengal, India
[2] IIEST, Dept Informat Technol, Sibpur, W Bengal, India
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
MICROELECTRONICS JOURNAL | 2018年 / 81卷
关键词
BDD; Clifford plus T; Fault-tolerance; Quantum circuits; T; -; depth; count; SURFACE CODE; LOGIC GATE; THRESHOLD;
D O I
10.1016/j.mejo.2018.08.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The near-future possibility of Quantum supremacy, which aspires to establish a set of algorithms running efficiently on a Quantum computer - have significantly fuelled the interest in design and automation of Quantum circuits. Multiple technologies such as Ion-Trap, Nuclear Magnetic Resonance (NMR), have made great progress in recent years towards a practical Quantum circuit implementation. For all these technologies, in order to suppress the inherent computation noise, fault-tolerance is a desirable feature. Fault tolerance is achieved by Quantum error correction codes, such as surface code. Due to the efficient realization of surface codes using Clifford + T gate library of Quantum logic gates, it is now becoming de facto gate library for Quantum circuit implementation. In this paper, we improve two key performance metrics, T - depth and T - count, for Quantum circuit realization using Clifford + T gates. In contrast with the previous approaches, we have incorporated two techniques - 1) restructuring of the gate positions in the designs to make it amenable towards a lower T- depth 2) using Binary Decision Diagrams (BDD) as an intermediate representation for achieving scalability. To validate our proposed optimizations, we have tested a wide spectrum of benchmarks, registering an average improvement of 74% and 21% on T - depth and T - count in compared works.
引用
收藏
页码:58 / 68
页数:11
相关论文
共 31 条
[1]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[2]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830
[3]  
[Anonymous], 6 INT C REV COMP JAP
[4]  
[Anonymous], 2008, 38 ISMVL MAY 2008
[5]  
[Anonymous], 1998, LECT NOTES PHYS
[6]  
[Anonymous], REVERSIBLE COMPUTATI
[7]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[8]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[9]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[10]  
Fowler A. G., 2012, ARXIV E PRINTS