Uniform fields inside two interacting non-parabolic and non-elliptical inhomogeneities

被引:6
|
作者
Wang, Xu [1 ]
Yang, Ping [1 ]
Schiavone, Peter [2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Univ Alberta, Dept Mech Engn, 10-203 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 01期
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Non-parabolic inhomogeneity; Non-elliptical inhomogeneity; Uniform stress field; Anti-plane elasticity; Plane elasticity; Conformal mapping; ELASTIC FIELD; INCLUSION;
D O I
10.1007/s00033-019-1245-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the aid of conformal mapping for a doubly connected domain, we prove the existence of internal uniform stress fields inside two interacting elastic inhomogeneities: one of non-parabolic open shape and the other of non-elliptical closed shape, when the matrix is subjected to uniform remote anti-plane and in-plane stresses. The uniformity property is unconditional for anti-plane elasticity but conditional for plane elasticity. The internal uniform stress fields are independent of the specific open and closed shapes of the two inhomogeneities. Typical numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Uniformity of stresses inside a non-elliptical inhomogeneity near an irregularly shaped hole in plane elasticity
    Wang, Xu
    Schiavone, Peter
    MECHANICS OF MATERIALS, 2020, 145
  • [32] A concentrated couple near two non-elliptical inclusions with internal uniform hydrostatic stresses
    Xu Wang
    Liang Chen
    Peter Schiavone
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [33] A non-circular inhomogeneity near a non-elliptical inhomogeneity designed to admit an internal uniform hydrostatic stress field
    Wang, Xu
    Schiavone, Peter
    MECHANICS OF MATERIALS, 2021, 162
  • [34] The Newtonian potential inhomogeneity problem: non-uniform eigenstrains in cylinders of non-elliptical cross section
    Joyce, Duncan
    Parnell, William J.
    JOURNAL OF ENGINEERING MATHEMATICS, 2017, 107 (01) : 283 - 303
  • [35] The Newtonian potential inhomogeneity problem: non-uniform eigenstrains in cylinders of non-elliptical cross section
    Duncan Joyce
    William J. Parnell
    Journal of Engineering Mathematics, 2017, 107 : 283 - 303
  • [36] Effect of a circular Eshelby inclusion on the non-elliptical shape of a coated neutral inhomogeneity with internal uniform stresses
    Wang, Xu
    Schiavone, Peter
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [37] Eshelby's problem of non-elliptical inclusions
    Zou, Wennan
    He, Qichang
    Huang, Mojia
    Zheng, Quanshui
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (03) : 346 - 372
  • [38] Two inhomogeneities of irregular shape with internal uniform stress fields interacting with a screw dislocation
    Wang, Xu
    Schiavone, Peter
    COMPTES RENDUS MECANIQUE, 2016, 344 (07): : 532 - 538
  • [39] Uniform hydrostatic thermal stress fields inside two interacting inclusions of irregular shape and related problem
    Wang, Xu
    Zhou, Kun
    MECHANICS OF MATERIALS, 2013, 66 : 110 - 119
  • [40] Internal uniform hydrostatic stresses in a three-phase non-elliptical inclusion subjected to a nearby concentrated couple
    Wang, Xu
    Schiavone, Peter
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (09) : 2931 - 2943