AutoMapper: A python']python tool for accelerating the polymer bonding workflow in LAMMPS

被引:6
作者
Bone, Matthew A. [1 ]
Howlin, Brendan J. [2 ,3 ]
Hamerton, Ian [1 ]
Macquart, Terence [1 ]
机构
[1] Univ Bristol, Dept Aerosp Engn, Sch Civil Aerosp & Mech Engn, Bristol Composites Inst, Queens Bldg,Univ Walk, Bristol BS8 ITR, Avon, England
[2] Univ Surrey, Dept Chem, Guildford GU2 7XH, Surrey, England
[3] Univ Surrey, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Molecular dynamics; LAMMPS; Polymer simulation; Open source software; MOLECULAR-DYNAMICS;
D O I
10.1016/j.commatsci.2022.111204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymeric materials modelling has the potential to rapidly accelerate the discovery of new materials due to the comparative ease of simulations compared to laboratory testing campaigns. High quality molecular dynamics simulation software, such as LAMMPS, are able to facilitate the transition from empirical to digitised chemistry. However, in order to fully benefit from the speed of simulations, tools need to be developed to automate the preprocessing stages required for modelling. AutoMapper is an open-source Python application that automates the generation of files required to use REACTER, a powerful polymer bonding package implemented within LAMMPS. To automate this process, the authors developed an iterative path search algorithm based on chemical graph theory to accurately map pre-and post-reaction polymerisation structures, and hence eliminating the bulk of the human effort previously required to run a simulation. AutoMapper requires minimal user input, is force field independent, and has shown marvellous performance on a wide range of polymerisation types.
引用
收藏
页数:6
相关论文
共 22 条
[1]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[2]   A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons [J].
Bone, Matthew A. ;
Macquart, Terence ;
Hamerton, Ian ;
Howlin, Brendan J. .
POLYMERS, 2020, 12 (04)
[3]  
Burch KimberlyJordan., 2019, Mathematical Physics in Theoretical Chemistry, P261, DOI [DOI 10.1016/B978-0-12-813651-5.00008-5, 10.1016/B978-0-12-813651-5.00008-5, 10.1016/C2016-0-04521-7.]
[4]   Role of Molecular Dynamics and Related Methods in Drug Discovery [J].
De Vivo, Marco ;
Masetti, Matteo ;
Bottegoni, Giovanni ;
Cavalli, Andrea .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (09) :4035-4061
[5]   A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation [J].
Demir, Baris ;
Walsh, Tiffany R. .
SOFT MATTER, 2016, 12 (08) :2453-2464
[6]   Molecular dynamics-driven drug discovery: leaping forward with confidence [J].
Ganesan, Aravindhan ;
Coote, Michelle L. ;
Barakat, Khaled .
DRUG DISCOVERY TODAY, 2017, 22 (02) :249-269
[7]   REACTER: A Heuristic Method for Reactive Molecular Dynamics [J].
Gissinger, Jacob R. ;
Jensen, Benjamin D. ;
Wise, Kristopher E. .
MACROMOLECULES, 2020, 53 (22) :9953-9961
[8]   Modeling chemical reactions in classical molecular dynamics simulations [J].
Gissinger, Jacob R. ;
Jensen, Benjamin D. ;
Wise, Kristopher E. .
POLYMER, 2017, 128 :211-217
[9]   Avogadro: an advanced semantic chemical editor, visualization, and analysis platform [J].
Hanwell, Marcus D. ;
Curtis, Donald E. ;
Lonie, David C. ;
Vandermeersch, Tim ;
Zurek, Eva ;
Hutchison, Geoffrey R. .
JOURNAL OF CHEMINFORMATICS, 2012, 4
[10]   Automatic mapping of atoms across both simple and complex chemical reactions [J].
Jaworski, Wojciech ;
Szymkuc, Sara ;
Mikulak-Klucznik, Barbara ;
Piecuch, Krzysztof ;
Klucznik, Tomasz ;
Kazmierowski, Michal ;
Rydzewski, Jan ;
Gambin, Anna ;
Grzybowski, Bartosz A. .
NATURE COMMUNICATIONS, 2019, 10 (1)