Predictive process monitoring based on distributed sensor data

被引:1
作者
Wiegand, Mario [1 ]
Stolpe, Marco [2 ]
Deuse, Jochen [1 ]
Morik, Katharina [2 ]
机构
[1] TU Dortmund, IPS, Leonhard Euler Str 5, D-44227 Dortmund, Germany
[2] TU Dortmund, Lehrstuhl Knstliche Intelligenz LS VIII, Otto Hahn Str 12, D-44227 Dortmund, Germany
关键词
Sensor data; process monitoring; process control; time series; machine learning; SOFT SENSOR; COMPONENT ANALYSIS; QUALITY ESTIMATION; MODEL; MACHINE;
D O I
10.1515/auto-2016-0013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a concept for predictive process monitoring based on real-time analysis of distributed sensor data with means of machine learning. To that end the paper proposes a systematic procedure for data preparation and analysis allowing for the prediction of final product quality.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 50 条
  • [21] Distributed process monitoring based on Kantorovich distance-multiblock variational autoencoder and Bayesian inference
    Yao, Zongyu
    Jiang, Qingchao
    Gu, Xingsheng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 73 : 311 - 323
  • [22] A data-driven distributed process monitoring method for industry manufacturing systems
    Yin, Ming
    Tian, Jiayi
    Zhu, Dan
    Wang, Yibo
    Jiang, Jijiao
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (07) : 1296 - 1316
  • [23] Neighborhood Variational Bayesian Multivariate Analysis for Distributed Process Monitoring With Missing Data
    Jiang, Qingchao
    Yan, Xuefeng
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (06) : 2330 - 2339
  • [24] Dynamic hypersphere based support vector data description for batch process monitoring
    Wang, Jianlin
    Liu, Weimin
    Qiu, Kepeng
    Yu, Tao
    Zhao, Liqiang
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 17 - 32
  • [25] Towards Reliable Predictive Process Monitoring
    Klinkmueller, Christopher
    van Beest, Nick R. T. P.
    Weber, Ingo
    [J]. INFORMATION SYSTEMS IN THE BIG DATA ERA, 2018, 317 : 163 - 181
  • [26] Data-Driven Soft Sensor Based on Sparse Relational Graph Attention Network for Hot Strip Mill Process
    Li, Kang
    Gao, Xiaoyong
    Xue, Jianye
    Ye, Hao
    Zhang, Laibin
    [J]. IFAC PAPERSONLINE, 2024, 58 (04): : 372 - 377
  • [27] Distributed Statistical Process Monitoring Based on Multiblock Canonical Correlation Analysis
    Wan, Xinchun
    Tong, Chudong
    Luo, Lijia
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (03) : 1193 - 1201
  • [28] Multi-agent based distributed chemical process monitoring and diagnosis
    Sun, JG
    Yang, XB
    Huang, D
    [J]. 2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 851 - 856
  • [29] ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    Gonzaga, J. C. B.
    Meleiro, L. A. C.
    Kiang, C.
    Maciel Filho, R.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (01) : 43 - 49
  • [30] Advanced Soft-Sensor Systems for Process Monitoring, Control, Optimisation, and Fault Diagnosis
    Shardt, Yuri A. W.
    Brooks, Kevin
    Yang, Xu
    Kim, Sanghong
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 11768 - 11777