Blowup of solutions of the three-dimensional Rosenau-Burgers equation

被引:5
作者
Korpusov, M. O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
finite-time blowup; Sobolev-type nonlinear equation; nonlinear mixed boundary value problem; hydrodynamics; semiconductor; Rosenau-Burgers equation; GLOBAL-SOLUTIONS; WAVE-EQUATIONS; NONEXISTENCE; INSTABILITY; BREAKING;
D O I
10.1007/s11232-012-0030-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the initial boundary value problem for the well-known three-dimensional Rosenau-Burgers equation in the cylinder (0, L) circle times S (where S subset of R-2) for some boundary conditions. Using the test-function method, we obtain the result on the blowup of solutions of this initial boundary value problem during a finite time. This is one of the first results in the " blowup" direction for this equation.
引用
收藏
页码:280 / 286
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 1998, GRADUATE STUD MATH
[2]  
[Anonymous], 2007, LINEAR NONLINEAR EQU
[3]  
[Anonymous], 2006, Lecture Notes in Mathematics
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Camassa R., 1993, ARXIVPATTSOL9305002V
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]   Shock-wave formation in Rosenau's extended hydrodynamics [J].
Escudero, C .
PHYSICAL REVIEW E, 2005, 71 (04)
[8]   On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations [J].
Galaktionov, V. A. ;
Mitidieri, E. ;
Pohozaev, S. I. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2930-2952
[9]   Third-Order Nonlinear Dispersive Equations: Shocks, Rarefaction, and Blowup Waves [J].
Galaktionov, V. A. ;
Pohozaev, S. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (10) :1784-1810
[10]  
Kalantarov V. K., 1978, J SOVIET MATH, V10, P53, DOI 10.1007/BF01109723