Generation of random bits from Poisson processes

被引:0
作者
Pae, Sung-il [1 ]
机构
[1] Hongik Univ, Dept Comp Engn, 94 Wausan Ro, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
random bits; Poisson process; Bernoulli process; geometric distribution; Elias algorithm; EFFICIENT CONSTRUCTION;
D O I
10.3233/JIFS-169835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a recent work, Bernardini and Rinaldo generalize and attempt to improve upon Elias method to obtain unbiased random bits from a geometric distribution resulted from a Poisson process. As a response, we analyse the output rates of their method and compare with the original binary Elias method applied on a Bernoulli process resulted from the same Poisson process, which turns out to be much simpler to implement and to have a higher output rate.
引用
收藏
页码:5939 / 5946
页数:8
相关论文
共 50 条
  • [21] A method of generating random bits by using electronic bipolar memristor
    杨彬彬
    许诺
    周二瑞
    李智炜
    李成
    易品筠
    方粮
    Chinese Physics B, 2020, (04) : 611 - 616
  • [22] Properties of Poisson processes directed by compound Poisson-Gamma subordinators
    Buchak, Khrystyna
    Sakhno, Lyudmyla
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (02): : 167 - 189
  • [23] Robustness for inhomogeneous Poisson point processes
    Assunçao, R
    Guttorp, P
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (04) : 657 - 678
  • [24] Sequential testing problems for Poisson processes
    Peskir, G
    Shiryaev, AN
    ANNALS OF STATISTICS, 2000, 28 (03) : 837 - 859
  • [25] On rescaled Poisson processes and the Brownian bridge
    Schoenberg, FP
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (02) : 445 - 457
  • [26] On the classification problem for Poisson point processes
    Cholaquidis, Alejandro
    Forzani, Liliana
    Llop, Pamela
    Moreno, Leonardo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 1 - 15
  • [27] On Rescaled Poisson Processes and the Brownian Bridge
    Frederic Paik Schoenberg
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 445 - 457
  • [28] ON ROUGH ISOMETRIES OF POISSON PROCESSES ON THE LINE
    Peled, Ron
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (02) : 462 - 494
  • [29] Variational analysis of functionals of Poisson processes
    Molchanov, I
    Zuyev, S
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (03) : 485 - 508
  • [30] EMPIRICAL LIKELIHOOD FOR COMPOUND POISSON PROCESSES
    Li, Zhouping
    Wang, Xiping
    Zhou, Wang
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (04) : 463 - 474