Generation of random bits from Poisson processes

被引:0
|
作者
Pae, Sung-il [1 ]
机构
[1] Hongik Univ, Dept Comp Engn, 94 Wausan Ro, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
random bits; Poisson process; Bernoulli process; geometric distribution; Elias algorithm; EFFICIENT CONSTRUCTION;
D O I
10.3233/JIFS-169835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a recent work, Bernardini and Rinaldo generalize and attempt to improve upon Elias method to obtain unbiased random bits from a geometric distribution resulted from a Poisson process. As a response, we analyse the output rates of their method and compare with the original binary Elias method applied on a Bernoulli process resulted from the same Poisson process, which turns out to be much simpler to implement and to have a higher output rate.
引用
收藏
页码:5939 / 5946
页数:8
相关论文
共 50 条
  • [11] INTEGRATION BY PARTS FOR POISSON PROCESSES
    ELLIOTT, RJ
    TSOI, AH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 44 (02) : 179 - 190
  • [12] Exact Output Rate of Generalized Peres Algorithm for Generating Random Bits from Loaded Dice
    Pae, Sung-il
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (07) : 218 - 221
  • [13] Fractional Poisson process with random drift
    Beghin, Luisa
    D'Ovidio, Mirko
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [14] Optimal Algorithms for Universal Random Number Generation From Finite Memory Sources
    Seroussi, Gadiel
    Weinberger, Marcelo J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) : 1277 - 1297
  • [15] Transport equation on semidiscrete domains and Poisson-Bernoulli processes
    Stehlik, Petr
    Volek, Jonas
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (03) : 439 - 456
  • [16] New statistical distributions for group counting in Bernoulli and Poisson processes
    Cao, Min
    Tai, Allen H.
    Chan, Ling-Yau
    TEST, 2012, 21 (01) : 29 - 53
  • [17] New statistical distributions for group counting in Bernoulli and Poisson processes
    Min Cao
    Allen H. Tai
    Ling-Yau Chan
    TEST, 2012, 21 : 29 - 53
  • [18] A NOTE ON ASYMPTOTIC EXPANSIONS FOR SUMS OVER A WEAKLY DEPENDENT RANDOM-FIELD WITH APPLICATION TO THE POISSON AND STRAUSS PROCESSES
    JENSEN, JL
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1993, 45 (02) : 353 - 360
  • [19] THE RANDOM CONNECTION MODEL AND FUNCTIONS OF EDGE-MARKED POISSON PROCESSES: SECOND ORDER PROPERTIES AND NORMAL APPROXIMATION
    Last, Guenter
    Nestmann, Franz
    Schulte, Matthias
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (01): : 128 - 168
  • [20] A method of generating random bits by using electronic bipolar memristor
    Yang, Bin-Bin
    Xu, Nuo
    Zhou, Er-Rui
    Li, Zhi-Wei
    Li, Cheng
    Yi, Pin-Yun
    Fang, Liang
    CHINESE PHYSICS B, 2020, 29 (04)