共 50 条
Bayesian Lasso for Semiparametric Structural Equation Models
被引:48
|作者:
Guo, Ruixin
[1
]
Zhu, Hongtu
[1
]
Chow, Sy-Miin
[2
]
Ibrahim, Joseph G.
[1
]
机构:
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Psychol, Chapel Hill, NC USA
来源:
基金:
美国国家科学基金会;
关键词:
Bayesian Lasso;
Latent variable;
Spline;
Structural equation model;
REGRESSION;
D O I:
10.1111/j.1541-0420.2012.01751.x
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.
引用
收藏
页码:567 / 577
页数:11
相关论文