A complete invariant for the topology of one-dimensional substitution tiling spaces

被引:0
|
作者
Barge, M [1 ]
Diamond, B
机构
[1] Montana State Univ, Dept Math, Bozeman, MT 59717 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let phi be a primitive, non-periodic substitution. The tiling space T-phi has a finite (non-zero) number of asymptotic composants. We describe the form and make use of these asymptotic composants to define a closely related substitution phi* and prove that for primitive, non-periodic substitutions phi and chi, T-phi and T-chi are homeomorphic if and only if phi* (or its reverse) and chi* are weakly equivalent, We also provide examples indicating that for substitution minimal systems, flow equivalence and orbit equivalence are independent.
引用
收藏
页码:1333 / 1358
页数:26
相关论文
共 50 条
  • [31] SYMMETRICAL ONE-DIMENSIONAL CELLULAR SPACES
    SZWERINSKI, H
    INFORMATION AND CONTROL, 1985, 67 (1-3): : 163 - 172
  • [32] SINGULAR HOMOLOGY OF ONE-DIMENSIONAL SPACES
    CURTIS, ML
    FORT, MK
    ANNALS OF MATHEMATICS, 1959, 69 (02) : 309 - 313
  • [33] Fundamental groups of one-dimensional spaces
    Dorfer, Gerhard
    Thuswaldner, Joerg M.
    Winkler, Reinhard
    FUNDAMENTA MATHEMATICAE, 2013, 223 (02) : 137 - 169
  • [34] Projective varieties invariant by one-dimensional foliations
    Soares, MG
    ANNALS OF MATHEMATICS, 2000, 152 (02) : 369 - 382
  • [35] INVARIANT CHARACTERISTICS OF ONE-DIMENSIONAL BINARY LATTICES
    KERNER, EH
    LOGAN, JG
    PHYSICAL REVIEW, 1955, 98 (04): : 1165 - 1165
  • [36] ONE-DIMENSIONAL DLR INVARIANT MEASURES ARE REGULAR
    DEMASI, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (01) : 43 - 50
  • [37] ON THE INVARIANT DISTRIBUTION OF A ONE-DIMENSIONAL AVALANCHE PROCESS
    Bressaud, Xavier
    Fournier, Nicolas
    ANNALS OF PROBABILITY, 2009, 37 (01): : 48 - 77
  • [38] Fractional topology in interacting one-dimensional superconductors
    del Pozo, Frederick
    Herviou, Loic
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2023, 107 (15)
  • [39] Doublons, topology and interactions in a one-dimensional lattice
    Martinez Azcona, P.
    Downing, C. A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Doublons, topology and interactions in a one-dimensional lattice
    P. Martínez Azcona
    C. A. Downing
    Scientific Reports, 11