Bifurcations of Emergent Bursting in a Neuronal Network

被引:45
作者
Wu, Yu [1 ,2 ,6 ,7 ]
Lu, Wenlian [1 ,2 ,3 ,4 ,6 ,7 ]
Lin, Wei [1 ,2 ,3 ,4 ]
Leng, Gareth [5 ]
Feng, Jianfeng [1 ,2 ,6 ,7 ]
机构
[1] Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Minist Educ China, Shanghai, Peoples R China
[5] Univ Edinburgh, Ctr Integrat Physiol, Edinburgh, Midlothian, Scotland
[6] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
[7] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
NEURAL OSCILLATIONS; SPIKING NEURONS; THETA RHYTHM; SYNCHRONIZATION; INHIBITION; MECHANISM; DYNAMICS; METASTABILITY; ASSEMBLIES; CHAINS;
D O I
10.1371/journal.pone.0038402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex neuronal networks are an important tool to help explain paradoxical phenomena observed in biological recordings. Here we present a general approach to mathematically tackle a complex neuronal network so that we can fully understand the underlying mechanisms. Using a previously developed network model of the milk-ejection reflex in oxytocin cells, we show how we can reduce a complex model with many variables and complex network topologies to a tractable model with two variables, while retaining all key qualitative features of the original model. The approach enables us to uncover how emergent synchronous bursting can arise from a neuronal network which embodies known biological features. Surprisingly, the bursting mechanisms are similar to those found in other systems reported in the literature, and illustrate a generic way to exhibit emergent and multiple time scale oscillations at the membrane potential level and the firing rate level.
引用
收藏
页数:12
相关论文
共 40 条
[1]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[2]   Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization [J].
Berglund, Nils ;
Fernandez, Bastien ;
Gentz, Barbara .
NONLINEARITY, 2007, 20 (11) :2551-2581
[3]   TOPOLOGICAL AND PHENOMENOLOGICAL CLASSIFICATION OF BURSTING OSCILLATIONS [J].
BERTRAM, R ;
BUTTE, MJ ;
KIEMEL, T ;
SHERMAN, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 1995, 57 (03) :413-439
[4]  
BERTRAM R, 1994, BIOL CYBERN, V70, P359, DOI 10.1007/BF00200333
[5]   A phantom bursting mechanism for episodic bursting [J].
Bertram, Richard ;
Rhoads, Joseph ;
Cimbora, Wendy P. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (07) :1979-1993
[6]   Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity [J].
Börgers, C ;
Kopell, N .
NEURAL COMPUTATION, 2003, 15 (03) :509-538
[7]  
Buzaki G., 2006, Rhythms of the Brain, DOI 10.1093/acprof:oso/9780195301069.001.0001
[8]   Stable propagation of synchronous spiking in cortical neural networks [J].
Diesmann, M ;
Gewaltig, MO ;
Aertsen, A .
NATURE, 1999, 402 (6761) :529-533
[9]   Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation [J].
Dodla, R ;
Svirskis, G ;
Rinzel, J .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (04) :2664-2677
[10]   Dynamical consequences of fast-rising, slow-decaying synapses in neuronal networks [J].
Ermentrout, B .
NEURAL COMPUTATION, 2003, 15 (11) :2483-2522