EXPLOSIVE SYNCHRONIZATION OF COMBINATIONAL PHASES ON RANDOM MULTIPLEX NETWORKS

被引:1
作者
Huo, Guanying [1 ,2 ]
Jiang, Xin [1 ,2 ]
Ma, Lili [3 ]
Guo, Quantong [1 ,2 ]
Ma, Yifang [4 ]
Li, Meng [1 ,2 ]
Zheng, Zhiming [1 ,2 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
multiplex network; Kuramoto model; explosive synchronization; KURAMOTO; MODEL;
D O I
10.1615/Int.J.UncertaintyQuantification.2016017051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coherent dynamics of a large ensemble of interconnected dynamical units can be characterized by the synchronization process of coupled oscillators. In many real situations, each unit, in the meantime, may exist in multilayer networks, where the composite state of the unit can be determined by the corresponding states on each layer. In this paper, a combinational phase is introduced to describe the joint action of several phases. The combinational phase is a linear superposition of the phase in each layer with a coupling parameter, in the same manner as the generation of voltage from electricity and resistance when applying the phaser method. We study the dynamics of combinational phases by applying the Kuramoto model on multiplex networks, in which the weight of each layer affecting the combinational phase is controlled by a coupling parameter. An abrupt transition is found to emerge in the synchronization of combinational phases by adjusting the coupling parameter. We also show that phases of oscillators in each single layer remain incoherent while the combinational ones are fully synchronized. Theoretical analysis of this explosive transition is studied on a multiplex network, of which one layer is a star network, and the other is a fully connected one. Our findings provide a first understanding of the explosive critical phenomena of combinational phases on multiplex networks.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 26 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] [Anonymous], 2013, ARXIV13060519
  • [3] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [4] Synchronization in small-world systems
    Barahona, M
    Pecora, LM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (05) : 054101/1 - 054101/4
  • [5] The structure and dynamics of multilayer networks
    Boccaletti, S.
    Bianconi, G.
    Criado, R.
    del Genio, C. I.
    Gomez-Gardenes, J.
    Romance, M.
    Sendina-Nadal, I.
    Wang, Z.
    Zanin, M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01): : 1 - 122
  • [6] Catastrophic cascade of failures in interdependent networks
    Buldyrev, Sergey V.
    Parshani, Roni
    Paul, Gerald
    Stanley, H. Eugene
    Havlin, Shlomo
    [J]. NATURE, 2010, 464 (7291) : 1025 - 1028
  • [7] A generalized perspective on non-perturbative linked-cluster expansions
    Coester, K.
    Clever, S.
    Herbst, F.
    Capponi, S.
    Schmidt, K. P.
    [J]. EPL, 2015, 110 (02)
  • [8] Diffusion Dynamics on Multiplex Networks
    Gomez, S.
    Diaz-Guilera, A.
    Gomez-Gardenes, J.
    Perez-Vicente, C. J.
    Moreno, Y.
    Arenas, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [9] Explosive Synchronization Transitions in Scale-Free Networks
    Gomez-Gardenes, Jesus
    Gomez, Sergio
    Arenas, Alex
    Moreno, Yamir
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (12)
  • [10] Do small worlds synchronize fastest?
    Grabow, C.
    Hill, S. M.
    Grosskinsky, S.
    Timme, M.
    [J]. EPL, 2010, 90 (04)