Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study

被引:32
|
作者
Khan, Md Arif [1 ]
Mahmud, Shafi [2 ]
Ul Alam, A. S. M. Rubayet [3 ]
Rahman, Md Ekhtiar [2 ]
Ahmed, Firoz [4 ]
Rahmatullah, Mohammed [1 ]
机构
[1] Univ Dev Alternat, Dept Biotechnol & Genet Engn, Dhaka 1209, Bangladesh
[2] Univ Rajshahi, Dept Genet Engn & Biotechnol, Rajshahi, Bangladesh
[3] Jashore Univ Sci & Technol, Dept Microbiol, Jashore, Bangladesh
[4] Noakhali Sci & Technol Univ, Dept Microbiol, Noakhali, Bangladesh
关键词
COVID-19; SARS-CoV-2; anti-viral drugs; drug discovery; epirubicin; vapreotida; saquinavir; FORCE-FIELD; CORONAVIRUS; LOPINAVIR/RITONAVIR; PARAMETERIZATION; DRUGS;
D O I
10.1080/07391102.2020.1796813
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent outbreak of novel coronavirus and its rapid pandemic escalation in all over the world has drawn the attention to urgent need for effective drug development. However, due to prolonged vaccine and drug development procedure against a newly emerged devastating SARS-CoV-2 virus pathogen, repurposing of existing potential pertinent drug molecules would be preferable strategy to reduce mortality immediately and further development of new drugs to combat overall global Covid-19 crisis in all over the world. Herein, we have filtered 23 prospective drug candidates through literature review. Assessing evidences from molecular docking studies, it was clearly seen that, Epirubicin, Vapreotida, and Saquinavir exhibited better binding affinity against SARS-CoV-2 Main Protease than other drug molecules among the 23 potential inhibitors. However, 50 ns molecular dynamics simulation indicated the less mobile nature of the docked complex maintaining structural integrity. Our overall prediction findings indicate that Epirubicin, Vapreotida, and Saquinavir may inhibit COVID-19 by synergistic interactions in the active cavity and those results can pave the way in drug discovery although it has to be further validated by in-vitro and in-vivo investigations. Communicated by Ramaswamy H. Sarma
引用
收藏
页码:6317 / 6323
页数:7
相关论文
共 50 条
  • [21] Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study
    Sherif, Yousery E.
    Gabr, Sami A.
    Hosny, Nasser M.
    Alghadir, Ahmad H.
    Alansari, Rayan
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [22] Natural inhibitors of SARS-CoV-2 main protease: structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies
    Halimi, Mohammad
    Bararpour, Parvindokht
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (09)
  • [23] Identification of Food Compounds as inhibitors of SARS-CoV-2 main protease using molecular docking and molecular dynamics simulations
    Masand, Vijay H.
    Sk, Md Fulbabu
    Kar, Parimal
    Rastija, Vesna
    Zaki, Magdi E. A.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 217
  • [24] Inhibition Potencies of Phytochemicals Derived from Sesame Against SARS-CoV-2 Main Protease: A Molecular Docking and Simulation Study
    Kumar, Anuj
    Mishra, Dwijesh Chandra
    Angadi, Ulavappa Basavanneppa
    Yadav, Rashmi
    Rai, Anil
    Kumar, Dinesh
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [25] Interaction of the renin inhibitor aliskiren with the SARS-CoV-2 main protease: a molecular docking study
    Vergoten, Erard
    Bailly, Christian
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (23) : 12714 - 12722
  • [26] Evaluation of flavonoids as potential inhibitors of the SARS-CoV-2 main protease and spike RBD: Molecular docking, ADMET evaluation and molecular dynamics simulations
    Hadni, Hanine
    Fitri, Asmae
    Benjelloun, Adil Touimi
    Benzakour, Mohammed
    Mcharfi, Mohammed
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2022, 99 (10)
  • [27] Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease
    Ouassaf, Mebarka
    Belaidi, Salah
    Chtita, Samir
    Lanez, Touhami
    Abul Qais, Faizan
    Amiruddin, Hashmi Md
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (21) : 11264 - 11273
  • [28] Synthesis and Molecular Docking Analysis of New Thiazo-isoindolinedione Hybrids as Potential Inhibitors of the SARS-CoV-2 Main Protease
    Shaaban, Saad
    Al-Karmalawy, Ahmed A.
    Alhamzani, Abdulrahman G.
    Abou-Krisha, Mortaga M.
    Al-Qudah, Mahmoud A.
    Yousef, Tarek A.
    ORIENTAL JOURNAL OF CHEMISTRY, 2023, 39 (04) : 913 - 918
  • [29] In silico investigation of Komaroviquinone as a potential inhibitor of SARS-CoV-2 main protease (Mpro): Molecular docking, molecular dynamics, and QM/MM approaches
    Santos, Samuel J. M.
    Valentini, Antoninho
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2024, 126
  • [30] In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing
    Kumar, Yogesh
    Singh, Harvijay
    Patel, Chirag N.
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (09) : 1210 - 1223