Modeling for Lithium-Ion Battery used in Electric Vehicles

被引:48
|
作者
Xiong, Rui [1 ]
He, Hongwen [1 ]
Guo, Hongqiang [1 ]
Ding, Yin
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
来源
CEIS 2011 | 2011年 / 15卷
关键词
electric vehicles; model-based battery management system; lithium-ion battery; electrochemical-polarization model; relaxation effect;
D O I
10.1016/j.proeng.2011.08.540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve and better the applicability of lithium-ion battery model in electric vehicles, a new electrochemical-polarization model was put forward for the real-time model-based battery management system and control applications by adding an extra RC network on the basis of the electrochemical model to describe the relaxation effect of the lithium-ion battery, and the open circuit voltage as a function of State of Charge defined by the Nernst model is used in the model to avoid a time-consuming, laborious and even error-prone experiment for specially determining open circuit voltage at several specified SoC values. The model parameters are identified by the least squares method with the experimental data of hybrid power pulse characteristic test on a LiFePO4 battery module. Experiments and simulation results show the new electrochemical-polarization model can simulate the dynamics of battery well. By using the proposed model and parameters identification approach, the time-consuming and complex experiments for model parameters' identification and periodical calibration are avoided. (c) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modeling, simulation, and parameters identification of a lithium-ion battery used in electric vehicles
    Haghjoo, Yasaman
    Khaburi, Davood Arab
    2022 9TH IRANIAN CONFERENCE ON RENEWABLE ENERGY & DISTRIBUTED GENERATION (ICREDG), 2022,
  • [2] Capacity fade modeling of a Lithium-ion battery for electric vehicles
    Baek, K. W.
    Hong, E. S.
    Cha, S. W.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2015, 16 (02) : 309 - 315
  • [3] Capacity fade modeling of a Lithium-ion battery for electric vehicles
    K. W. Baek
    E. S. Hong
    S. W. Cha
    International Journal of Automotive Technology, 2015, 16 : 309 - 315
  • [4] Multifunctional structural lithium-ion battery for electric vehicles
    Zhang, Yancheng
    Ma, Jun
    Singh, Abhendra K.
    Cao, Lei
    Seo, Jiho
    Rahn, Christopher D.
    Bakis, Charles E.
    Hickner, Michael A.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (12) : 1603 - 1613
  • [5] Modal Analysis of a Lithium-Ion Battery for Electric Vehicles
    Garafolo, Nicholas Gordon
    Farhad, Siamak
    Koricherla, Manindra Varma
    Wen, Shihao
    Esmaeeli, Roja
    ENERGIES, 2022, 15 (13)
  • [6] Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles
    Xiong, Rui
    Zhang, Yongzhi
    Wang, Ju
    He, Hongwen
    Peng, Simin
    Pecht, Michael
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 4110 - 4121
  • [7] Integration issues of lithium-ion battery into electric vehicles battery pack
    Saw, Lip Huat
    Ye, Yonghuang
    Tay, Andrew A. O.
    JOURNAL OF CLEANER PRODUCTION, 2016, 113 : 1032 - 1045
  • [8] Modeling the dynamic behavior of a lithium-ion battery for electric vehicles using numerical optimization
    胡晓松
    孙逢春
    邹渊
    Journal of Beijing Institute of Technology, 2011, 20 (01) : 60 - 64
  • [9] Modeling and Simulation Research on Lithium-ion Battery in Electric Vehicles based on Genetic Algorithm
    Lin, Cheng
    Zhang, Xiaohua
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 246 - 249
  • [10] Prediction of Ageing Effects on Lithium-Ion Battery for Electric Vehicles
    Micari, S.
    Foti, S.
    Testa, A.
    De Caro, S.
    Sergi, F.
    Andaloro, L.
    Aloisio, D.
    Napoli, G.
    13TH INTERNATIONAL CONFERENCE ON ELEKTRO (ELEKTRO 2020), 2020,