Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries

被引:21
作者
Ahmed, Faiz [1 ]
Rahman, Md Mahbubur [1 ]
Sutradhar, Sabuj Chandra [1 ]
Lopa, Nasrin Siraj [1 ]
Ryu, Taewook [1 ]
Yoon, Soojin [1 ]
Choi, Inhwan [1 ]
Lee, Seungchan [1 ]
Kim, Whangi [1 ]
机构
[1] Konkuk Univ, Dept Energy & Mat, Chungju 27478, South Korea
关键词
Aqueous rechargeable Li-Ion batteries; Lithium bis(fluorosulfonyl)imide derivatives; Divalent; Electrochemical stability; Solid electrolyte interphase; LITHIUM BATTERY; ANODE MATERIAL; ELECTROLYTE; WATER; BIS(FLUOROSULFONYL)IMIDE; POLYMER; LICOO2; METAL;
D O I
10.1016/j.electacta.2018.12.161
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Novel electrolytes with wide electrochemical potential window and high thermal stability have great potential for aqueous rechargeable lithium-ion batteries (ARLBs). Herein, we report the synthesis of two ionic salts of lithium sulfonylbis(fluorosulfonyl)imide (LiSFSI) and lithium carbonylbis(fluorosulfonyl) imide (LiCFSI) with divalent Li+ for ARLBs. These ionic compounds are the derivatives of monovalent lithium bis(fluorosulfonyl)imide (LiFSI). The LiSFSI and LiCFSI exhibit the kinetic electrochemical stability window of ca. 3.78 and 3.52 V, respectively, which can be further expanded due to the formation of a stable solid electrolyte interface (SEI) layer. While LiFSI exhibits the kinetic electrochemical stability window of ca. 2.22 V without the formation of an SEI layer. Full ARLBs based on LiSFSI and LiCFSI electrolytes with a LiCoO2 cathode and graphite anode can deliver the specific discharge capacity of ca. 113.50 and 95.0 mAh/g, respectively, at 0.1C rate. Whereas, it is ca. 52.53 mAh/g for LiFSI at 0.1C rate. The capacity retention for LiSFSI, LiCFSI, and LiFSI based ARLBs are ca. 97.3, 89.6, and 67.8%, respectively, after 500 cycles. Furthermore, both LiSFSI and LiCFSI reveal much higher thermal stability compared to LiFSI. Thus, the derivatization of conventional ionic compounds is an effective strategy to enhance the battery performance and its lifetime. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 43 条
[31]   Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries [J].
Sharova, Varvara ;
Moretti, Arianna ;
Diemant, Thomas ;
Varzi, Alberto ;
Behm, R. Juergen ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2018, 375 :43-52
[32]   Investigation of Pre-lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures [J].
Shellikeri, A. ;
Watson, V. ;
Adams, D. ;
Kalu, E. E. ;
Read, J. A. ;
Jow, T. R. ;
Zheng, J. S. ;
Zheng, J. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) :A3914-A3924
[33]   Why Bis(fluorosulfonyl)imide Is a "Magic Anion" for Electrochemistry [J].
Shkrob, Ilya A. ;
Marin, Timothy W. ;
Zhu, Ye ;
Abraham, Daniel P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (34) :19661-19671
[34]   "Water-in-Salt" electrolyte enabled LiMn2O4/TiS2 Lithium-ion batteries [J].
Sun, Wei ;
Suo, Liumin ;
Wang, Fei ;
Eidson, Nico ;
Yang, Chongyin ;
Han, Fudong ;
Ma, Zhaohui ;
Gao, Tao ;
Zhu, Min ;
Wang, Chunsheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 82 :71-74
[35]   Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte [J].
Suo, Liumin ;
Borodin, Oleg ;
Sun, Wei ;
Fan, Xiulin ;
Yang, Chongyin ;
Wang, Fei ;
Gao, Tao ;
Ma, Zhaohui ;
Schroeder, Marshall ;
von Cresce, Arthur ;
Russell, Selena M. ;
Armand, Michel ;
Angell, Austen ;
Xu, Kang ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (25) :7136-7141
[36]   "Water-in-Salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications [J].
Suo, Liumin ;
Han, Fudong ;
Fan, Xiulin ;
Liu, Huili ;
Xu, Kang ;
Wang, Chunsheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (17) :6639-6644
[37]   "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries [J].
Suo, Liumin ;
Borodin, Oleg ;
Gao, Tao ;
Olguin, Marco ;
Ho, Janet ;
Fan, Xiulin ;
Luo, Chao ;
Wang, Chunsheng ;
Xu, Kang .
SCIENCE, 2015, 350 (6263) :938-943
[38]   Improvement of cycle performance of lithium ion cell LiMn2O4/LixV2O5 with aqueous solution electrolyte by polypyrrole coating on anode [J].
Wang, Haibo ;
Zeng, Yuqun ;
Huang, Kelong ;
Liu, Suqin ;
Chen, Liquan .
ELECTROCHIMICA ACTA, 2007, 52 (15) :5102-5107
[39]   Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries [J].
Wang, Qing ;
Geng, Jing ;
Yuan, Chao ;
Kuai, Long ;
Geng, Baoyou .
ELECTROCHIMICA ACTA, 2016, 212 :41-46
[40]   An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode [J].
Wang, Xujiong ;
Hou, Yuyang ;
Zhu, Yusong ;
Wu, Yuping ;
Holze, Rudolf .
SCIENTIFIC REPORTS, 2013, 3