Cyclic groups and quantum logic gates

被引:2
作者
Pourkia, Arash [1 ]
Batle, J. [2 ]
机构
[1] Amer Univ Middle East, Coll Engn, Div Math, 220 Dasman, Kuwait 15453, Kuwait
[2] Univ Illes Balears, Dept Fis, Palma De Mallorca, Balearic Island, Spain
关键词
Quantum computation; Yang-Baxter equation; Quantum gates; Cyclic groups; Berry phase; YANG-BAXTER EQUATION; STATE;
D O I
10.1016/j.aop.2016.06.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a formula for an infinite number of universal quantum logic gates, which are 4 by 4 unitary solutions to the Yang-Baxter (Y-B) equation. We obtain this family from a certain representation of the cyclic group of order n. We then show that this discrete family, parametrized by integers n, is in fact, a small sub-class of a larger continuous family, parametrized by real numbers 9, of universal quantum gates. We discuss the corresponding Yang-Baxterization and related symmetries in the concomitant Hamiltonian. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 27
页数:18
相关论文
共 31 条
  • [1] Barenco A., 1937, P MATH PHYS SCI, V449, P679
  • [2] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [3] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [4] Berman G P., 1998, Introduction to Quantum Computers
  • [5] Brylinski J.L., 2002, MATH QUANTUM COMPUTA
  • [6] Braiding transformation, entanglement swapping, and Berry phase in entanglement space
    Chen, Jing-Ling
    Xue, Kang
    Ge, Mo-Lin
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):
  • [7] YANG-BAXTERIZATION OF BRAID GROUP-REPRESENTATIONS
    CHENG, Y
    GE, ML
    XUE, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) : 195 - 208
  • [8] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [9] Unitary Solutions to the Yang-Baxter Equation in Dimension Four
    Dye, H. A.
    [J]. QUANTUM INFORMATION PROCESSING, 2003, 2 (1-2) : 117 - 151
  • [10] Quantum computation and Shor's factoring algorithm
    Ekert, A
    Jozsa, R
    [J]. REVIEWS OF MODERN PHYSICS, 1996, 68 (03) : 733 - 753