QuPath: Open source software for digital pathology image analysis

被引:4938
作者
Bankhead, Peter [1 ]
Loughrey, Maurice B. [1 ,2 ]
Fernandez, Jose A. [1 ]
Dombrowski, Yvonne [3 ]
Mcart, Darragh G. [1 ]
Dunne, Philip D. [1 ]
McQuaid, Stephen [1 ,2 ]
Gray, Ronan T. [4 ]
Murray, Liam J. [4 ]
Coleman, Helen G. [4 ]
James, Jacqueline A. [1 ,2 ]
Salto-Tellez, Manuel [1 ,2 ]
Hamilton, Peter W. [1 ]
机构
[1] Queens Univ Belfast, Ctr Canc Res & Cell Biol, Northern Ireland Mol Pathol Lab, Belfast, Antrim, North Ireland
[2] Belfast Hlth & Social Care Trust, Tissue Pathol, Belfast, Antrim, North Ireland
[3] Queens Univ Belfast, Ctr Expt Med, Belfast, Antrim, North Ireland
[4] Queens Univ Belfast, Canc Epidemiol & Hlth Serv Res Grp, Ctr Publ Hlth, Belfast, Antrim, North Ireland
关键词
PATTERNS; PLATFORM; CANCER;
D O I
10.1038/s41598-017-17204-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath's flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.
引用
收藏
页数:7
相关论文
共 34 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration [J].
Altman, Douglas G. ;
McShane, Lisa M. ;
Sauerbrei, Willi ;
Taube, Sheila E. .
PLOS MEDICINE, 2012, 9 (05)
[3]  
[Anonymous], 2016, A Language and Environment for Statistical Computing
[4]   The prognostic significance of the aberrant extremes of p53 immunophenotypes in breast cancer [J].
Boyle, David P. ;
McArt, Darragh G. ;
Irwin, Gareth ;
Wilhelm-Benartzi, Charlotte S. ;
Lioe, Tong F. ;
Sebastian, Elena ;
McQuaid, Stephen ;
Hamilton, Peter W. ;
James, Jacqueline A. ;
Mullan, Paul B. ;
Catherwood, Mark A. ;
Harkin, D. Paul ;
Salto-Tellez, Manuel .
HISTOPATHOLOGY, 2014, 65 (03) :340-352
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   A call for bioimaging software usability [J].
Carpenter, Anne E. ;
Kamentsky, Lee ;
Eliceiri, Kevin W. .
NATURE METHODS, 2012, 9 (07) :666-670
[7]  
de Chaumont F, 2012, NAT METHODS, V9, P690, DOI [10.1038/NMETH.2075, 10.1038/nmeth.2075]
[8]   Analyzing huge pathology images with open source software [J].
Deroulers, Christophe ;
Ameisen, David ;
Badoual, Mathilde ;
Gerin, Chloe ;
Granier, Alexandre ;
Lartaud, Marc .
DIAGNOSTIC PATHOLOGY, 2013, 8
[9]  
Dunne P. D., 2016, CANC IMMUNOL RES, P1
[10]   Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J].
Galon, Jerom ;
Costes, Anne ;
Sanchez-Cabo, Fatima ;
Kirilovsky, Amos ;
Mlecnik, Bernhard ;
Lagorce-Pages, Christine ;
Tosolini, Marie ;
Camus, Matthieu ;
Berger, Anne ;
Wind, Philippe ;
Zinzindohoue, Franck ;
Bruneval, Patrick ;
Cugnenc, Paul-Henri ;
Trajanoski, Zlatko ;
Fridman, Wolf-Herman ;
Pages, Franck .
SCIENCE, 2006, 313 (5795) :1960-1964