A Generalization of a Levitin and Parnovski Universal Inequality for Eigenvalues

被引:2
作者
Ilias, Said [1 ]
Makhoul, Ola [1 ]
机构
[1] Univ Tours, CNRS, UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
关键词
Eigenvalues; Hodge de Rham Laplacian; Universal inequalities; Submanifolds; PAYNE-POLYA-WEINBERGER; DIFFERENTIAL-OPERATORS; COMMUTATOR BOUNDS; TRACE IDENTITIES; LAPLACIAN; SPECTRUM; SUBMANIFOLDS; GAPS;
D O I
10.1007/s12220-010-9200-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive "universal" inequalities for the sums of eigenvalues of the Hodge de Rham Laplacian on Euclidean closed submanifolds and of eigenvalues of the Kohn Laplacian on the Heisenberg group. These inequalities generalize the Levitin-Parnovski inequality obtained for the sums of eigenvalues of the Dirichlet Laplacian of a bounded Euclidean domain.
引用
收藏
页码:206 / 222
页数:17
相关论文
共 31 条