Microstructural evolution, mechanical and thermal properties of TiC-ZrC-Cr3C2 composites

被引:17
作者
Chen, Lei [1 ,2 ,3 ]
Wang, Yujin [1 ,3 ]
Li, Yapeng [1 ]
Zhang, Xinghong [2 ]
Meng, Qingchang [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Inst Adv Ceram, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Green Mfg Technol, Key Lab Adv Struct Funct Integrat Mat, Harbin 150001, Heilongjiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Transition metal carbide; Microstructure; Mechanical properties; Thermal properties; SOLID-SOLUTION FORMATION; ZRC; DENSIFICATION; CONDUCTIVITY; CERAMICS; BEHAVIOR; MO;
D O I
10.1016/j.ijrmhm.2019.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dense TiC-ZrC-Cr3C2 composites with various TiC content from 19.6 mol% to 78.4 mol% have been fabricated by hot-pressing sintering at 1950 degrees C using 2.0 mol% Cr3C2 as sintering aid. The effect of TiC content on the microstructure, mechanical and thermal properties of TiC-ZrC-Cr3C2 composites are investigated systematically. The single (Zr, Ti, Cr)C solid solution is obtained when TiC content is 19.6 mol%, while with increasing TiC content, the composites begin to consist of Zr-rich (Zr, Ti)C solid solution and Ti-rich (Ti, Zr, Cr)C solid solution phase. SEM and EDS analysis confirm that Cr element is not favorable to diffuse into ZrC lattice to form (Zr, Cr)C solid solution. Flexural strength and Vickers hardness increase gradually with increasing TiC content, but fracture toughness does not improve significantly. Fracture toughness are in the range of 3.34-4.01 MPa.m(1/2) for all composites, and the optimum value reaches 4.01 MPa.m(1/2) with 49.0 mol% TiC. Experimental results of the thermal expansion coefficient reveal that the addition of TiC raises the thermal expansivity of TiC-ZrC-Cr3C2 composites. Noticeably, the thermal conductivities of TiC-ZrC-Cr3C2 composites show a decrement trend with increasing TiC content, not as theoretical predicting by the rule of mixtures. For instance, the thermal conductivity at 25 degrees C ranges from 18.0 W/mK for 8Z2T2C composite down to 10.6 W/m.K for 2Z8T2C composite.
引用
收藏
页码:188 / 194
页数:7
相关论文
共 37 条
[1]   First-principles phase diagram calculations for the HfC-TiC, ZrC-TiC, and HfC-ZrC solid solutions [J].
Adjaoud, O. ;
Steinle-Neumann, G. ;
Burton, B. P. ;
van de Walle, A. .
PHYSICAL REVIEW B, 2009, 80 (13)
[2]   Comparison of Two-Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites [J].
Angle, Jesse P. ;
Wang, Zhaojie ;
Dames, Chris ;
Mecartney, Martha L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (09) :2935-2942
[3]   HOT-PRESSING KINETICS OF ZIRCONIUM CARBIDE [J].
BARNIER, P ;
BRODHAG, C ;
THEVENOT, F .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (07) :2547-2552
[4]   Experimental determination of the ternary diagram of the Ti-Cr-C system [J].
Booker, PH ;
Kunrath, AO ;
Hepworth, MT .
ACTA MATERIALIA, 1997, 45 (04) :1625-1632
[5]   Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC-HfC fabricated by spark plasma sintering [J].
Cedillos-Barraza, Omar ;
Grasso, Salvatore ;
Al Nasiri, Nasrin ;
Jayaseelan, Daniel D. ;
Reece, Michael J. ;
Lee, William E. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (07) :1539-1548
[6]   Diffusion induced recrystallization of TiC [J].
Chae, KW ;
Hwang, CS ;
Kim, DY ;
Cho, SJ .
ACTA MATERIALIA, 1996, 44 (05) :1793-1799
[7]   On the Low Temperature Densification of Reactively Hot Pressed Non-Stoichiometric ZrC and (Zr,Ti)C [J].
Chakrabarti, Tamoghna ;
Rangaraj, Lingappa ;
Jayaram, Vikram .
MATERIALS TODAY-PROCEEDINGS, 2016, 3 (09) :3077-3085
[8]   Control of crystallinity in sputtered Cr-Ti-C films [J].
Furlan, Andrej ;
Lu, Jun ;
Hultman, Lars ;
Jonsson, Ulf .
ACTA MATERIALIA, 2013, 61 (17) :6352-6361
[9]   Diffusion and solid solution formation between the binary carbides of TaC, HfC and ZrC [J].
Ghaffari, S. A. ;
Faghihi-Sani, M. A. ;
Golestani-Fard, F. ;
Nojabayy, M. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 41 :180-184
[10]  
Hugh O., 1996, Handbook of Refractory Carbides and Nitrides