PROGRESSIVE CONTINUAL LEARNING FOR SPOKEN KEYWORD SPOTTING

被引:5
|
作者
Huang, Yizheng [1 ]
Hou, Nana [2 ]
Chen, Nancy F. [1 ]
机构
[1] ASTAR, Inst Infocomm Res, Singapore, Singapore
[2] Nanyang Technol Univ, Singapore, Singapore
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2022年
关键词
Continual learning; Incremental learning; Keyword spotting;
D O I
10.1109/ICASSP43922.2022.9746488
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Catastrophic forgetting is a thorny challenge when updating keyword spotting (KWS) models after deployment. To tackle such challenges, we propose a progressive continual learning strategy for small-footprint spoken keyword spotting (PCL-KWS). Specifically, the proposed PCL-KWS framework introduces a network instantiator to generate the task-specific sub-networks for remembering previously learned keywords. As a result, the PCL-KWS approach incrementally learns new keywords without forgetting prior knowledge. Besides, the proposed keyword-aware network scaling mechanism of PCL-KWS constrains the growth of model parameters while achieving high performance. Experimental results show that after learning five new tasks sequentially, our proposed PCLKWS approach archives the new state-of-the-art performance of 92.8% average accuracy for all the tasks on Google Speech Command dataset compared with other baselines.
引用
收藏
页码:7552 / 7556
页数:5
相关论文
共 50 条
  • [1] Dual-Memory Multi-Modal Learning for Continual Spoken Keyword Spotting with Confidence Selection and Diversity Enhancement
    Yang, Zhao
    Ng, Dianwen
    Li, Xizhe
    Zhang, Chong
    Jiang, Rui
    Xi, Wei
    Ma, Yukun
    Ni, Chongjia
    Zhao, Jizhong
    Ma, Bin
    Chng, Eng Siong
    INTERSPEECH 2023, 2023, : 3774 - 3778
  • [2] Deep Spoken Keyword Spotting: An Overview
    Lopez-Espejo, Ivan
    Tan, Zheng-Hua
    Hansen, John H. L.
    Jensen, Jesper
    IEEE ACCESS, 2022, 10 : 4169 - 4199
  • [3] Rainbow Keywords: Efficient Incremental Learning for Online Spoken Keyword Spotting
    Xiao, Yang
    Hou, Nana
    Chng, Eng Siong
    INTERSPEECH 2022, 2022, : 3764 - 3768
  • [4] A novel keyword rescoring method for improved spoken keyword spotting
    Rebai, Ilyes
    BenAyed, Yassine
    Mahdi, Walid
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 312 - 320
  • [5] METRIC LEARNING FOR KEYWORD SPOTTING
    Huh, Jaesung
    Lee, Minjae
    Heo, Heesoo
    Mun, Seongkyu
    Chung, Joon Son
    2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT), 2021, : 133 - 140
  • [6] FEDERATED LEARNING FOR KEYWORD SPOTTING
    Leroy, David
    Coucke, Alice
    Lavril, Thibaut
    Gisselbrecht, Thibault
    Dureau, Joseph
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6341 - 6345
  • [7] Spoken Keyword Spotting via Multi-Lattice Alignment
    Lin, Hui
    Stupakov, Alex
    Bilmes, Jeff
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2191 - 2194
  • [8] Exploring Filterbank Learning for Keyword Spotting
    Lopez-Espejo, Ivan
    Tan, Zheng-Hua
    Jensen, Jesper
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 331 - 335
  • [9] Broadcasted Residual Learning for Efficient Keyword Spotting
    Kim, Byeonggeun
    Chang, Simyung
    Lee, Jinkyu
    Sung, Dooyong
    INTERSPEECH 2021, 2021, : 4538 - 4542
  • [10] Efficient Learning-Free Keyword Spotting
    Retsinas, George
    Louloudis, Georgios
    Stamatopoulos, Nikolaos
    Gatos, Basilis
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) : 1587 - 1600