共 40 条
A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses
被引:14
|作者:
Interlenghi, Matteo
[1
]
Salvatore, Christian
[1
,2
]
Magni, Veronica
[3
]
Caldara, Gabriele
[2
]
Schiavon, Elia
[1
]
Cozzi, Andrea
[3
]
Schiaffino, Simone
[4
]
Carbonaro, Luca Alessandro
[5
,6
]
Castiglioni, Isabella
[7
,8
]
Sardanelli, Francesco
[3
,4
]
机构:
[1] DeepTrace Technol S R L, Via Conservatorio 17, I-20122 Milan, Italy
[2] Ist Univ Super, Dept Sci Technol & Soc, Scuola Univ IUSS, Piazza Vittoria 15, I-27100 Pavia, Italy
[3] Univ Milan, Dept Biomed Sci Hlth, Via Luigi Mangiagalli 31, I-20133 Milan, Italy
[4] IRCCS Policlin San Donato, Unit Radiol, Via Rodolfo Morandi 30, I-20097 San Donato Milanese, Italy
[5] ASST Grande Osped Metropolitano Niguarda, Dept Radiol, Piazza dellOspedale Maggiore 3, I-20162 Milan, Italy
[6] Univ Milan, Dept Oncol & HematoOncol, Via Festa Perdono 7, I-20122 Milan, Italy
[7] CNR, Inst Biomed Imaging & Physiol, Via Fratelli Cervi 93, I-20090 Segrate, Italy
[8] Univ Milano Bicocca, Dept Phys, Piazza Sci 3, I-20126 Milan, Italy
来源:
基金:
欧盟地平线“2020”;
关键词:
breast cancer;
ultrasound (US);
core needle biopsy;
machine learning;
radiomics;
sensitivity;
positive predictive value;
CORE NEEDLE-BIOPSY;
CANCER;
TRENDS;
ULTRASONOGRAPHY;
MAMMOGRAPHY;
DIAGNOSES;
DENSITY;
WOMEN;
D O I:
10.3390/diagnostics12010187
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
We developed a machine learning model based on radiomics to predict the BI-RADS category of ultrasound-detected suspicious breast lesions and support medical decision-making towards short-interval follow-up versus tissue sampling. From a retrospective 2015-2019 series of ultrasound-guided core needle biopsies performed by four board-certified breast radiologists using six ultrasound systems from three vendors, we collected 821 images of 834 suspicious breast masses from 819 patients, 404 malignant and 430 benign according to histopathology. A balanced image set of biopsy-proven benign (n = 299) and malignant (n = 299) lesions was used for training and cross-validation of ensembles of machine learning algorithms supervised during learning by histopathological diagnosis as a reference standard. Based on a majority vote (over 80% of the votes to have a valid prediction of benign lesion), an ensemble of support vector machines showed an ability to reduce the biopsy rate of benign lesions by 15% to 18%, always keeping a sensitivity over 94%, when externally tested on 236 images from two image sets: (1) 123 lesions (51 malignant and 72 benign) obtained from two ultrasound systems used for training and from a different one, resulting in a positive predictive value (PPV) of 45.9% (95% confidence interval 36.3-55.7%) versus a radiologists' PPV of 41.5% (p < 0.005), combined with a 98.0% sensitivity (89.6-99.9%); (2) 113 lesions (54 malignant and 59 benign) obtained from two ultrasound systems from vendors different from those used for training, resulting into a 50.5% PPV (40.4-60.6%) versus a radiologists' PPV of 47.8% (p < 0.005), combined with a 94.4% sensitivity (84.6-98.8%). Errors in BI-RADS 3 category (i.e., assigned by the model as BI-RADS 4) were 0.8% and 2.7% in the Testing set I and II, respectively. The board-certified breast radiologist accepted the BI-RADS classes assigned by the model in 114 masses (92.7%) and modified the BI-RADS classes of 9 breast masses (7.3%). In six of nine cases, the model performed better than the radiologist did, since it assigned a BI-RADS 3 classification to histopathology-confirmed benign masses that were classified as BI-RADS 4 by the radiologist.
引用
收藏
页数:18
相关论文