Approximation algorithms for clique-transversal sets and clique-independent sets in cubic graphs

被引:6
作者
Liang, Zuosong [1 ]
Shan, Erfang [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Clique-transversal set; Clique-independent set; Approximation algorithm; NP-complete; Cubic graph;
D O I
10.1016/j.ipl.2011.09.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A clique-transversal set S of a graph G is a subset of vertices intersecting all the cliques of C. where a clique is a complete subgraph maximal under inclusion and having at least two vertices. A clique-independent set of the graph G is a set of pairwise disjoint cliques of G. The clique-transversal number tau(C)(G) of G is the cardinality of the smallest clique-transversal set in G and the clique-independence number alpha(C)(G) of G is the cardinality of the largest clique-independent set in G. This paper proves that determining tau(C)(C) and alpha(C)(G) is NP-complete for a cubic planar graph G of girth 3. Further we propose two approximation algorithms for determining tau(C)(G) and alpha(C)(G) in a cubic graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1107
页数:4
相关论文
共 13 条
[1]  
Bacsó G, 2009, DISCRETE MATH THEOR, V11, P15
[2]   Clique transversal and clique independence on comparability graphs [J].
Balachandran, V ;
Nagavamsi, P ;
Rangan, CP .
INFORMATION PROCESSING LETTERS, 1996, 58 (04) :181-184
[3]   On balanced graphs [J].
Bonomo, F ;
Durán, G ;
Lin, MC ;
Szwarcfiter, JL .
MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) :233-250
[4]   Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs [J].
Bonomo, Flavia ;
Chudnovsky, Maria ;
Duran, Guillermo .
DISCRETE MATHEMATICS, 2009, 309 (11) :3485-3499
[5]   ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS [J].
CHANG, GJ ;
FARBER, M ;
TUZA, Z .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (01) :24-29
[6]   On clique-transversals and clique-independent sets [J].
Durán, G ;
Lin, MC ;
Szwarcfiter, JL .
ANNALS OF OPERATIONS RESEARCH, 2002, 116 (1-4) :71-77
[7]   COVERING THE CLIQUES OF A GRAPH WITH VERTICES [J].
ERDOS, P ;
GALLAI, T ;
TUZA, Z .
DISCRETE MATHEMATICS, 1992, 108 (1-3) :279-289
[8]   Bounds on the clique-transversal number of regular graphs [J].
ErFang, Shan ;
Cheng, T. C. E. ;
Kang LiYing .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (05) :851-863
[9]   Algorithmic aspects of clique-transversal and clique-independent sets [J].
Guruswami, V ;
Rangan, CP .
DISCRETE APPLIED MATHEMATICS, 2000, 100 (03) :183-202
[10]   MINIMUM EDGE DOMINATING SETS [J].
HORTON, JD ;
KILAKOS, K .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) :375-387