SPECTRAL FLOW, INDEX AND THE SIGNATURE OPERATOR

被引:10
作者
Azzali, Sara [1 ]
Wahl, Charlotte [2 ]
机构
[1] Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
[2] Leibniz Archiv, D-30169 Hannover, Germany
关键词
Spectral flow; index theory; semifinite von Neumann algebra; signature; foliation; FREDHOLM THEORIES; THEOREM;
D O I
10.1142/S1793525311000477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relate the spectral flow to the index for paths of selfadjoint Breuer-Fredholm operators affiliated to a semifinite von Neumann algebra, generalizing results of Robbin-Salamon and Pushnitski. Then we prove the vanishing of the von Neumann spectral flow for the tangential signature operator of a foliated manifold when the metric is varied. We conclude that the tangential signature of a foliated manifold with boundary does not depend on the metric. In the Appendix we reconsider integral formulas for the spectral flow of paths of bounded operators.
引用
收藏
页码:37 / 67
页数:31
相关论文
共 32 条
[1]  
[Anonymous], 1997, Fields Institute Coomun.
[2]  
[Anonymous], DYN PARTIAL DIFFER E
[3]   The Atiyah-Patodi-Singer signature formula for measured foliations [J].
Antonini, Paolo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 695 :217-242
[4]   The Atiyah-Patodi-Singer index formula for measured foliations [J].
Antonini, Paolo .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02) :140-176
[5]  
Atiyah M F., 1976, Asterisque, V32-33, P43
[6]  
BENAMEUR MT, 2006, ANAL GEOMETRY TOPOLO
[7]  
BLACKADAR B, 1998, MSRI PUBLICATIONS, V5
[8]   Unbounded Fredholm operators and spectral flow [J].
Booss-Bavnbek, B ;
Lesch, M ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (02) :225-250
[9]  
BoossBavnbek B., 1993, ELLIPTIC BOUNDARY PR
[10]   FREDHOLM THEORIES IN VON NEUMANN ALGEBRAS .I. [J].
BREUER, M .
MATHEMATISCHE ANNALEN, 1968, 178 (03) :243-&