Fundamental matrix estimation by multiobjective genetic algorithm with Taguchi's method

被引:6
作者
Tang, Cheng-Yuan [1 ]
Wu, Yi-Leh [2 ]
Peng, Chien-Chin [1 ]
机构
[1] Huafan Univ, Dept Informat Management, Taipei, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Fundamental matrix; Multiobjective genetic algorithms; Taguchi's method; 3D reconstruction; Random population; EVOLUTIONARY ALGORITHMS;
D O I
10.1016/j.asoc.2011.08.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a multiobjective genetic algorithm to compute the fundamental matrix, which are the foundation of multiview geometry and calibration in many 3D applications such as 3D reconstruction. The proposed method is a modification of the Intelligent Multiobjective Evolutionary Algorithm (IMOEA) [7] coupled with Taguchi's method [14]. Our design focuses are the fitness assignment of multiple objective functions, the diversity preservation, and the addition of an elite set. Moreover, we propose to include an additional random population besides the original initial population in genetic algorithms. In each generation we replace the random population and select only the non-dominated individuals into the elite set. The proposed method can explore more general solution space and can locate better solutions. We validate the proposed methods by demonstrating the effectiveness of the proposed methods to estimate of the fundamental matrices. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 50 条
  • [21] A Robust Fundamental Matrix Estimation Method Based on Epipolar Geometric Error Criterion
    Yan, Kun
    Zhao, Rujin
    Liu, Enhai
    Ma, Yuebo
    IEEE ACCESS, 2019, 7 (147523-147533) : 147523 - 147533
  • [22] A robust algorithm to estimate the fundamental matrix
    Chen, ZZ
    Wu, CK
    Shen, PY
    Liu, Y
    Quan, L
    PATTERN RECOGNITION LETTERS, 2000, 21 (09) : 851 - 861
  • [23] MOCell: A Cellular Genetic Algorithm for Multiobjective Optimization
    Nebro, Antonio J.
    Durillo, Juan J.
    Luna, Francisco
    Dorronsoro, Bernabe
    Alba, Enrique
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (07) : 726 - 746
  • [24] Effectiveness of neighborhood crossover in multiobjective genetic algorithm
    Yoshii, Kengo
    Hiroyasu, Tomoyuki
    Miki, Mitsunori
    Hashimoto, Atsushi
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 218 - +
  • [25] An EA-Based Method for Estimating the Fundamental Matrix
    Barragan, Daniel
    Trujillo, Maria
    Cabezas, Ivan
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 228 - 235
  • [26] A new design optimization framework based on immune algorithm and Taguchi's method
    Yildiz, Ali Riza
    COMPUTERS IN INDUSTRY, 2009, 60 (08) : 613 - 620
  • [27] Fundamental matrix estimation A study of error criteria
    Fathy, Mohammed E.
    Hussein, Ashraf S.
    Tolba, Mohammed F.
    PATTERN RECOGNITION LETTERS, 2011, 32 (02) : 383 - 391
  • [28] Optimize Fundamental Matrix Estimation Based on RANSAC
    Zhou, Jun
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 333 - 337
  • [29] Fundamental matrix estimation without prior match
    Noury, Nicolas
    Sur, Frederic
    Berger, Marie-Odile
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 513 - 516
  • [30] Fundamental Matrix Estimation Using Relative Depths
    Ding, Yaqing
    Vavral, Vaclay
    Bhatacharya, Snehal
    Weng, Qianliang
    Yang, Jian
    Kukelova, Zuzana
    COMPUTER VISION - ECCV 2024, PT LXXI, 2025, 15129 : 142 - 159