Symmetry-Breaking Phase Transition without a Peierls Instability in Conducting Monoatomic Chains

被引:23
|
作者
Blumenstein, C. [1 ]
Schaefer, J. [1 ]
Morresi, M. [1 ]
Mietke, S. [2 ]
Matzdorf, R. [2 ]
Claessen, R. [1 ]
机构
[1] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany
[2] Univ Kassel, Fachbereich Naturwissensch, D-34132 Kassel, Germany
关键词
QUANTUM CHAINS; GE(001); SURFACE;
D O I
10.1103/PhysRevLett.107.165702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] SYMMETRY-BREAKING, PHASE-TRANSITION AND GRAVITY
    SINHA, KP
    PRAMANA, 1985, 25 (04) : 343 - 347
  • [2] UNPREDICTABILITY OF SYMMETRY-BREAKING IN A PHASE-TRANSITION
    THIRRING, W
    POSCH, HA
    PHYSICAL REVIEW E, 1993, 48 (06): : 4333 - 4339
  • [3] SYMMETRY-BREAKING TRANSITION IN FINITE FRENKEL-KONTOROVA CHAINS
    BRAIMAN, Y
    BAUMGARTEN, J
    JORTNER, J
    KLAFTER, J
    PHYSICAL REVIEW LETTERS, 1990, 65 (19) : 2398 - 2401
  • [4] A symmetry-breaking phase transition in a dynamical decision model
    Lambert, Gaultier
    Chevereau, Guillaume
    Bertin, Eric
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [5] Symmetry-breaking instability in gap soliton
    Senthilnathan, K
    Porsezian, K
    OPTICS COMMUNICATIONS, 2003, 227 (4-6) : 295 - 299
  • [6] Irreversibility across a Nonreciprocal PT -Symmetry-Breaking Phase Transition
    Alston, Henry
    Cocconi, Luca
    Bertrand, Thibault
    PHYSICAL REVIEW LETTERS, 2023, 131 (25)
  • [7] ELECTROWEAK PHASE-TRANSITION IN NJL MODELS OF SYMMETRY-BREAKING
    LALAK, Z
    PHYSICS LETTERS B, 1992, 278 (03) : 284 - 290
  • [8] REPLICA SYMMETRY-BREAKING WITHOUT FRUSTRATION
    JANOWSKY, SA
    PHYSICS LETTERS A, 1987, 125 (6-7) : 305 - 306
  • [9] STOCHASTIC RESONANCE WITHOUT SYMMETRY-BREAKING
    GAMMAITONI, L
    MARCHESONI, F
    SANTUCCI, S
    PHYSICS LETTERS A, 1994, 195 (02) : 116 - 120
  • [10] Pomeranchuk instability: Symmetry-breaking and experimental signatures
    Quintanilla, J.
    Hooley, C.
    Powell, B. J.
    Schofield, A. J.
    Haque, M.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 1279 - 1281