Self-similarity and spectral asymptotics for the continuum random tree

被引:15
作者
Croydon, David [1 ]
Hambly, Ben [2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
continuum random tree; self-similar fractal; spectral asymptotics; heat kernel;
D O I
10.1016/j.spa.2007.06.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use the random self-similarity of the continuum random tree to show that it is homeomorphic to a post-critically finite self-similar fractal equipped with a random self-similar metric. As an application, we determine the mean and almost-sure leading order behaviour of the high frequency asymptotics of the eigenvalue counting function associated with,the natural Dirichlet form on the continuum random tree. We also obtain short time asymptotics for the trace of the heat semigroup and the annealed on-diagonal heat kernel associated with this Dirichlet form. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:730 / 754
页数:25
相关论文
共 16 条
[2]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[3]  
ALDOUS DJ, 1990, LECT NOTE SER, V167, P23
[4]  
Barlow M., 1998, LECT NOTES MATH, V1690, P1
[5]  
CROYDON D, VOLUME GROWTH HEAT K
[6]  
CROYDON DA, THESIS
[7]   Probabilistic and fractal aspects of Levy trees [J].
Duquesne, T ;
Le Gall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (04) :553-603
[8]   On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets [J].
Hambly, BM .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) :221-247
[9]  
KARLIN S, 1955, PAC J MATH, V5, P229
[10]   HARMONIC CALCULUS ON LIMITS OF NETWORKS AND ITS APPLICATION TO DENDRITES [J].
KIGAMI, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) :48-86