Analyticity of the Streamlines for Periodic Traveling Water Waves with Bounded Vorticity

被引:41
作者
Matioc, Bogdan-Vasile [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
PARTICLE TRAJECTORIES; EQUATIONS; SYMMETRY;
D O I
10.1093/imrn/rnq235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the streamlines underneath the surface of a periodic traveling water wave propagating above a flat bed with constant speed which exceeds the horizontal velocity of all fluid particles are real analytic provided the vorticity function is merely bounded and measurable.
引用
收藏
页码:3858 / 3871
页数:14
相关论文
共 27 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE [J].
ANGENENT, S .
ANNALS OF MATHEMATICS, 1990, 132 (03) :451-483
[4]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[5]  
[Anonymous], 2009, Analysis
[6]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[7]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[8]   On the deep water wave motion [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1405-1417
[9]  
CONSTANTIN A, PERIODIC TRAVELING G
[10]   Particle trajectories in linear water waves [J].
Constantin, Adrian ;
Villari, Gabriele .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (01) :1-18