Stereoselective excision of thymine glycol from oxidatively damaged DNA

被引:61
作者
Miller, H [1 ]
Fernandes, AS
Zaika, E
McTigue, MM
Torres, MC
Wente, M
Iden, CR
Grollman, AP
机构
[1] SUNY Stony Brook, Biol Chem Lab, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Pharmacol Sci, Stony Brook, NY 11794 USA
关键词
D O I
10.1093/nar/gkh190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA damage created by reactive oxygen species includes the prototypic oxidized pyrimidine, thymine glycol (Tg), which exists in oxidatively damaged DNA as two diastereoisomeric pairs. In Escherichia coli, Saccharomyces cerevesiae and mice, Tg is preferentially excised by endonuclease III (Endo III) and endonuclease VIII (Endo VIII), yNTG1 and yNTG2, and mNTH and mNEIL1, respectively. We have explored the ability of these DNA glycosylases to discriminate between Tg stereoisomers. Oligonucleotides containing a single, chromatographically pure (5S,6R) or (5R,6S) stereoisomer of Tg were prepared by oxidation with osmium tetroxide. Steady-state kinetic analyses of the excision process revealed that Endo III, Endo VIII, yNTG1, mNTH and mNEIL1, but not yNTG2, excise Tg isomers from DNA in a stereoselective manner, as reflected in the parameter of catalytic efficiency (k(cat)/K-m). When DNA glycosylases occur as complementary pairs, failure of one or both enzymes to excise their cognate Tg stereoisomer from oxidatively damaged DNA could have deleterious consequences for the cell.
引用
收藏
页码:338 / 345
页数:8
相关论文
共 59 条
[1]   Global genome removal of thymine glycol in Escherichia coli requires endonuclease III but the persistence of processed repair intermediates rather than thymine glycol correlates with cellular sensitivity to high doses of hydrogen peroxide [J].
Alanazi, M ;
Leadon, SA ;
Mellon, I .
NUCLEIC ACIDS RESEARCH, 2002, 30 (21) :4583-4591
[2]  
Alseth I, 1999, MOL CELL BIOL, V19, P3779
[3]   Comparison of substrate specificities of Escherichia coli endonuclease III and its mouse homologue (mNTH1) using defined oligonucleotide substrates [J].
Asagoshi, K ;
Odawara, H ;
Nakano, H ;
Miyano, T ;
Terato, H ;
Ohyama, Y ;
Seki, S ;
Ide, H .
BIOCHEMISTRY, 2000, 39 (37) :11389-11398
[4]   PURIFICATION AND CHARACTERIZATION OF ESCHERICHIA-COLI ENDONUCLEASE-III FROM THE CLONED NTH GENE [J].
ASAHARA, H ;
WISTORT, PM ;
BANK, JF ;
BAKERIAN, RH ;
CUNNINGHAM, RP .
BIOCHEMISTRY, 1989, 28 (10) :4444-4449
[5]   Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III [J].
Aspinwall, R ;
Rothwell, DG ;
RoldanArjona, T ;
Anselmino, C ;
Ward, CJ ;
Cheadle, JP ;
Sampson, JR ;
Lindahl, T ;
Harris, PC ;
Hickson, ID .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :109-114
[6]   A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII [J].
Bandaru, V ;
Sunkara, S ;
Wallace, SS ;
Bond, JP .
DNA REPAIR, 2002, 1 (07) :517-529
[7]   GENETIC-EFFECTS OF THYMINE GLYCOL - SITE-SPECIFIC MUTAGENESIS AND MOLECULAR MODELING STUDIES - (IONIZING-RADIATION OXIDATIVE DAMAGE HYDROXYL RADICALS) [J].
BASU, AK ;
LOECHLER, EL ;
LEADON, SA ;
ESSIGMANN, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :7677-7681
[8]   THYMINE GLYCOL AND THYMIDINE GLYCOL IN HUMAN AND RAT URINE - A POSSIBLE ASSAY FOR OXIDATIVE DNA DAMAGE [J].
CATHCART, R ;
SCHWIERS, E ;
SAUL, RL ;
AMES, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (18) :5633-5637
[9]   THYMINE GLYCOL LESIONS TERMINATE CHAIN ELONGATION BY DNA-POLYMERASE-I INVITRO [J].
CLARK, JM ;
BEARDSLEY, GP .
NUCLEIC ACIDS RESEARCH, 1986, 14 (02) :737-749
[10]   FUNCTIONAL-EFFECTS OF CIS-THYMINE GLYCOL LESIONS ON DNA-SYNTHESIS INVITRO [J].
CLARK, JM ;
BEARDSLEY, GP .
BIOCHEMISTRY, 1987, 26 (17) :5398-5403