First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

被引:20
作者
Bevillon, E. [1 ]
Colombier, J. P. [1 ]
Recoules, V. [2 ]
Stoian, R. [1 ]
机构
[1] Univ Jean Monnet, Univ Lyon, Lab Hubert Curien, UMR CNRS 5516, F-42000 St Etienne, France
[2] CEA DIF, F-91297 Arpajon, France
关键词
Ultrashort laser; Femtosecond laser excited electrons; First-principles calculations; Electronic heat capacities; IRRADIATION; GAS;
D O I
10.1016/j.apsusc.2014.09.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 25 条
[1]  
Anisimov S. I., 1974, SOV PHYS JETP, V39, P10
[2]  
Ashcroft NW., 1976, SOLID STATE PHYS
[3]   Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study [J].
Bevillon, E. ;
Colombier, J. P. ;
Recoules, V. ;
Stoian, R. .
PHYSICAL REVIEW B, 2014, 89 (11)
[4]   All at once [J].
Cavalleri, Andrea .
SCIENCE, 2007, 318 (5851) :755-756
[5]   Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals [J].
Colombier, J. P. ;
Garrelie, F. ;
Faure, N. ;
Reynaud, S. ;
Bounhalli, M. ;
Audouard, E. ;
Stoian, R. ;
Pigeon, F. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
[6]   Guiding heat in laser ablation of metals on ultrafast timescales: an adaptive modeling approach on aluminum [J].
Colombier, J. P. ;
Combis, P. ;
Audouard, E. ;
Stoian, R. .
NEW JOURNAL OF PHYSICS, 2012, 14
[7]   Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals [J].
Fisher, DV ;
Henis, Z ;
Eliezer, S ;
Meyer-Ter-Vehn, J .
LASER AND PARTICLE BEAMS, 2006, 24 (01) :81-94
[8]   The physics of ultra-short laser interaction with solids at non-relativistic intensities [J].
Gamaly, E. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 508 (4-5) :91-243
[9]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[10]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919