First passage statistics for diffusing diffusivity

被引:44
作者
Sposini, Vittoria [1 ,2 ]
Chechkin, Aleksei [1 ,3 ]
Metzler, Ralf [1 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[2] Basque Ctr Appl Math, Bilbao 48009, Spain
[3] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
diffusion; superstatistics; first passage; ANOMALOUS DIFFUSION; BROWNIAN DIFFUSION; MODELS;
D O I
10.1088/1751-8121/aaf6ff
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rapidly increasing number of systems is identified in which the stochastic motion of tracer particles follows the Brownian law < r(2)(t)> similar or equal to Dt yet the distribution of particle displacements is strongly non-Gaussian. A central approach to describe this effect is the diffusing diffusivity (DD) model in which the diffusion coefficient itself is a stochastic quantity, mimicking heterogeneities of the environment encountered by the tracer particle on its path. We here quantify in terms of analytical and numerical approaches the first passage behaviour of the DD model. We observe significant modifications compared to Brownian-Gaussian diffusion, in particular that the DD model may have a faster first passage dynamics. Moreover we find a universal crossover point of the survival probability independent of the initial condition.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 1981, Stochastic Processes in Physics and Chemistry
[2]   Superstatistics [J].
Beck, C ;
Cohen, EGD .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) :267-275
[3]  
Beck C, 2006, PROG THEOR PHYS SUPP, P29, DOI 10.1143/PTPS.162.29
[4]  
Bochner S., 1960, Harmonic analysis and the theory of probability
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]  
Brown R., 2009, PHILOS MAG, V4, P161
[7]   Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities [J].
Chechkin, Aleksei V. ;
Seno, Flavio ;
Metzler, Ralf ;
Sokolov, Igor M. .
PHYSICAL REVIEW X, 2017, 7 (02)
[8]   Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells [J].
Cherstvy, Andrey G. ;
Nagel, Oliver ;
Beta, Carsten ;
Metzler, Ralf .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (35) :23034-23054
[9]   Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes [J].
Cherstvy, Andrey G. ;
Chechkin, Aleksei V. ;
Metzler, Ralf .
NEW JOURNAL OF PHYSICS, 2013, 15
[10]   Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion [J].
Chubynsky, Mykyta V. ;
Slater, Gary W. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)