Quadratic perturbations of a quadratic reversible center of genus one

被引:1
|
作者
Peng, Linping [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Math & Syst Sci, LIMB, Minist Educ, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic reversible and non-Hamiltonian system; genus one; period annulus; limit cycle; cyclicity; LIMIT-CYCLES; HAMILTONIAN-SYSTEMS; HILBERT PROBLEM; PERIOD ANNULI; BIFURCATIONS; CYCLICITY;
D O I
10.1007/s11464-011-0155-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a reversible and non-Hamitonian system with a period annulus bounded by a hemicycle in the Poincar, disk. It is proved that the cyclicity of the period annulus under quadratic perturbations is equal to two. This verifies some results of the conjecture given by Gautier et al.
引用
收藏
页码:911 / 930
页数:20
相关论文
共 50 条
  • [31] Hopf Cyclicity of a Family of Generic Reversible Quadratic Systems with One Center
    Ji Hua Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 1586 - 1594
  • [32] Hopf Cyclicity of a Family of Generic Reversible Quadratic Systems with One Center
    Ji Hua WANG
    Acta Mathematica Sinica,English Series, 2019, (10) : 1586 - 1594
  • [33] THE CYCLICITY OF A CLASS OF QUADRATIC REVERSIBLE CENTERS DEFINING ELLIPTIC CURVES
    Ji, Guilin
    Liu, Changjian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5883 - 5903
  • [34] A LINEAR ESTIMATION TO THE NUMBER OF ZEROS FOR ABELIAN INTEGRALS IN A KIND OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE
    Hong, Lijun
    Hong, Xiaochun
    Lu, Junliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1534 - 1544
  • [35] Quadratic perturbations of quadratic codimension-four centers
    Gavrilov, Lubomir
    Iliev, Iliya D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 69 - 76
  • [36] The cyclicity of a class of quadratic reversible systems with hyperelliptic curves
    Sun, Yangjian
    Ji, Guilin
    Wang, Shaoqing
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [37] Cyclicity of a fake saddle inside the quadratic vector fields
    De Maesschalck, P.
    Rebollo-Perdomo, S.
    Torregrosa, J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (02) : 588 - 620
  • [38] Quadratic double centers and their perturbations
    Francoise, Jean-Pierre
    Yang, Peixing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 : 563 - 593
  • [39] On the Abelian integrals of quadratic reversible centers with orbits formed by genus one curves of higher degree
    Hong, Xiaochun
    Xie, Shaolong
    Ma, Rui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 924 - 941
  • [40] Perturbations of quadratic Hamiltonian two-saddle cycles
    Gavrilov, Lubomir
    They, Iliya D.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02): : 307 - 324